Halpern, Laurence Absorbing boundary conditions for the discretization schemes of the one- dimensional wave equation. (English) Zbl 0482.65053 Math. Comput. 38, 415-429 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 24 Documents MSC: 65N06 Finite difference methods for boundary value problems involving PDEs 35L05 Wave equation 65N15 Error bounds for boundary value problems involving PDEs Keywords:absorbing boundary conditions; artificial boundaries; ill-posed problem; stable boundary conditions fitting to the discretization scheme PDF BibTeX XML Cite \textit{L. Halpern}, Math. Comput. 38, 415--429 (1982; Zbl 0482.65053) Full Text: DOI OpenURL References: [1] P. Bettess and O. C. Zienkiewicz, Diffraction and refraction of surface waves using finite and infinite elements, Internat. J. Numer. Methods Engrg. 11 (1977), no. 8, 1271 – 1290. · Zbl 0367.76014 [2] R. W. Clayton & B. Engquist, ”Absorbing boundary conditions for the numerical solution of wave propagation problems,” SSA Bull., v. 6, 1977, pp. 1529-1540. [3] R. W. Clayton & B. Engquist, ”Absorbing boundary conditions for wave-equation migration,” Geophysics, v. 45, 1980, pp. 895-904. [4] Bjorn Engquist and Andrew Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp. 31 (1977), no. 139, 629 – 651. · Zbl 0367.65051 [5] Björn Engquist and Andrew Majda, Radiation boundary conditions for acoustic and elastic wave calculations, Comm. Pure Appl. Math. 32 (1979), no. 3, 314 – 358. · Zbl 0387.76070 [6] L. Halpern, Etude de Conditiones aux Limites Absorbantes pour des Schémas Numériques Relatifs à des Equations Hyperboliques Linéaires, Thèse de 3éme cycle, Université Paris VI, Septembre 1980. [7] Heinz-Otto Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 277 – 298. · Zbl 0188.41102 [8] E. L. Lindmann, ””Free-space” boundary conditions for the time dependent wave equation,” J. Comput. Phys., v. 18, 1975, pp. 66-78. [9] Andrew Majda and Stanley Osher, Reflection of singularities at the boundary, Comm. Pure Appl. Math. 28 (1975), no. 4, 479 – 499. , https://doi.org/10.1002/cpa.3160280404 Andrew Majda and Stanley Osher, Erratum: ”Reflection of singularities at the boundary” (Comm. Pure Appl. Math. 28 (1975), no. 4, 479 – 499), Comm. Pure Appl. Math. 28 (1975), no. 5, 677. · Zbl 0314.35061 [10] Louis Nirenberg, Lectures on linear partial differential equations, American Mathematical Society, Providence, R.I., 1973. Expository Lectures from the CBMS Regional Conference held at the Texas Technological University, Lubbock, Tex., May 22 – 26, 1972; Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 17. · Zbl 0267.35001 [11] A. C. Reynolds, ”Boundary conditions for the numerical solution of wave propagation problems,” Geophysics, v. 43, 1978, pp. 1099-1110. [12] W. D. Smith, ”A non reflecting plane boundary for wave propagation problems,” J. Comput. Phys., v. 15, 1974, pp. 492-503. · Zbl 0287.73024 [13] Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. · Zbl 0356.65096 [14] Michael E. Taylor, Reflection of singularities of solutions to systems of differential equations, Comm. Pure Appl. Math. 28 (1975), no. 4, 457 – 478. · Zbl 0332.35058 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.