×

zbMATH — the first resource for mathematics

Analysis of some mixed finite element methods related to reduced integration. (English) Zbl 0482.65058

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74K20 Plates
76D05 Navier-Stokes equations for incompressible viscous fluids
65N15 Error bounds for boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ivo Babuška, Error-bounds for finite element method, Numer. Math. 16 (1970/1971), 322 – 333. · Zbl 0214.42001 · doi:10.1007/BF02165003 · doi.org
[2] I. Babuška, J. Osborn & J. Pitkäranta, Analysis of Mixed Methods Using Mesh Dependent Norms, Report #2003, Mathematics Research Center, University of Wisconsin, 1979. · Zbl 0472.65083
[3] M. Bercovier, Perturbation of mixed variational problems. Application to mixed finite element methods, RAIRO Anal. Numér. 12 (1978), no. 3, 211 – 236, iii (English, with French summary). · Zbl 0428.65059
[4] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. R-2, 129 – 151 (English, with loose French summary). · Zbl 0338.90047
[5] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058
[6] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33 – 75. · Zbl 0302.65087
[7] V. Girault, A combined finite element and marker and cell method for solving Navier-Stokes equations, Numer. Math. 26 (1976), no. 1, 39 – 59. · Zbl 0313.65105 · doi:10.1007/BF01396565 · doi.org
[8] V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, Berlin-New York, 1979. · Zbl 0413.65081
[9] R. Glowinski and O. Pironneau, On numerical methods for the Stokes problem, Energy methods in finite element analysis, Wiley, Chichester, 1979, pp. 243 – 264. · Zbl 0415.76024
[10] V. A. Kondrat\(^{\prime}\)ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč. 16 (1967), 209 – 292 (Russian).
[11] D. Malkus & T. Hughes, ”Mixed finite element methods–Reduced and selective integration techniques: A unification of concepts,” Comput. Methods Appl. Mech. Engrg., v. 15, 1978, pp. 63-81. · Zbl 0381.73075
[12] H. Melzer & R. Rannacher, Spannungskonzentrationen in Eckpunkten der vertikalen belasteten Kirchoffschen Platte, Universität Bonn, 1979. (Preprint.)
[13] R. L. Sani, P. M. Gresho & R. L. Lee, On the Spurious Pressures Generated by Certain GFEM Solutions of the Incompressible Navier-Stokes Equations, Technical report, Lawrence Livermore Laboratory, Oct. 1979. · Zbl 0446.76034
[14] Ranbir S. Sandhu and Kamar J. Singh, Reduced integration for improved accuracy of finite element approximations, Comput. Methods Appl. Mech. Engrg. 14 (1978), no. 1, 23 – 37. · Zbl 0404.73067 · doi:10.1016/0045-7825(78)90011-7 · doi.org
[15] Roger Temam, Une méthode d’approximation de la solution des équations de Navier-Stokes, Bull. Soc. Math. France 96 (1968), 115 – 152 (French). · Zbl 0181.18903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.