Johnson, Claes; Pitkäranta, Juhani Analysis of some mixed finite element methods related to reduced integration. (English) Zbl 0482.65058 Math. Comput. 38, 375-400 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 4 ReviewsCited in 50 Documents MSC: 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs 74K20 Plates 76D05 Navier-Stokes equations for incompressible viscous fluids 65N15 Error bounds for boundary value problems involving PDEs 74S05 Finite element methods applied to problems in solid mechanics Keywords:mixed finite element methods; reduced integration; error estimates; Stokes’ problem; plate problem; Babuska-Brezzi type stability estimate × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Ivo Babuška, Error-bounds for finite element method, Numer. Math. 16 (1970/1971), 322 – 333. · Zbl 0214.42001 · doi:10.1007/BF02165003 [2] I. Babuška, J. Osborn & J. Pitkäranta, Analysis of Mixed Methods Using Mesh Dependent Norms, Report #2003, Mathematics Research Center, University of Wisconsin, 1979. · Zbl 0472.65083 [3] M. Bercovier, Perturbation of mixed variational problems. Application to mixed finite element methods, RAIRO Anal. Numér. 12 (1978), no. 3, 211 – 236, iii (English, with French summary). · Zbl 0428.65059 [4] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. R-2, 129 – 151 (English, with loose French summary). · Zbl 0338.90047 [5] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058 [6] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33 – 75. · Zbl 0302.65087 [7] V. Girault, A combined finite element and marker and cell method for solving Navier-Stokes equations, Numer. Math. 26 (1976), no. 1, 39 – 59. · Zbl 0313.65105 · doi:10.1007/BF01396565 [8] V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, Berlin-New York, 1979. · Zbl 0413.65081 [9] R. Glowinski and O. Pironneau, On numerical methods for the Stokes problem, Energy methods in finite element analysis, Wiley, Chichester, 1979, pp. 243 – 264. · Zbl 0415.76024 [10] V. A. Kondrat\(^{\prime}\)ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč. 16 (1967), 209 – 292 (Russian). [11] D. Malkus & T. Hughes, ”Mixed finite element methods–Reduced and selective integration techniques: A unification of concepts,” Comput. Methods Appl. Mech. Engrg., v. 15, 1978, pp. 63-81. · Zbl 0381.73075 [12] H. Melzer & R. Rannacher, Spannungskonzentrationen in Eckpunkten der vertikalen belasteten Kirchoffschen Platte, Universität Bonn, 1979. (Preprint.) [13] R. L. Sani, P. M. Gresho & R. L. Lee, On the Spurious Pressures Generated by Certain GFEM Solutions of the Incompressible Navier-Stokes Equations, Technical report, Lawrence Livermore Laboratory, Oct. 1979. · Zbl 0446.76034 [14] Ranbir S. Sandhu and Kamar J. Singh, Reduced integration for improved accuracy of finite element approximations, Comput. Methods Appl. Mech. Engrg. 14 (1978), no. 1, 23 – 37. · Zbl 0404.73067 · doi:10.1016/0045-7825(78)90011-7 [15] Roger Temam, Une méthode d’approximation de la solution des équations de Navier-Stokes, Bull. Soc. Math. France 96 (1968), 115 – 152 (French). · Zbl 0181.18903 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.