zbMATH — the first resource for mathematics

Expectation and transition probability. (English) Zbl 0483.03041

03G12 Quantum logic
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
Full Text: DOI
[1] Benoist, R. W., and Marchand, J.-P. (1979). ?Statistical Inference in Coupled Quantum Systems,?Letters in Mathematical Physics,3, 93-96. · Zbl 0403.46052
[2] Benoist, R. W., Marchand, J.-P., and Wyss, W. (1979). ?A Note on Relative Entropy,?Letters in Mathematical Physics,3, 169-173.
[3] Cantoni, V., (1975). ?Generalized Transition Probability,?Communications in Mathematical Physics,44, 125-128.
[4] Gudder, S., (1966). ?Uniqueness and Existence Properties of Bounded Observables,?Pacific Journal of Mathematics,19, 81-93, 588-589. · Zbl 0149.23603
[5] Gudder, S. (1978). ?Cantoni’s Generalized Transition Probability,?Communications in Mathematical Physics,63, 265-267. · Zbl 0391.60100
[6] Gudder, S. (1979),Stochastic Methods in Quantum Mechanics. North Holland, New York. · Zbl 0439.46047
[7] Gudder, S., Marchand, J.-P., and Wyss, W. (1979), ?Bures Distance and Relative Entropy,?Journal of Mathematical Physics,20, 1963-1966. · Zbl 0425.60095
[8] Jauch, J. (1968).Foundations of Quantum Mechanics. Addison-Wesley, Reading, Massachusetts. · Zbl 0166.23301
[9] Mackey, G. (1963).The Mathematical Foundations of Quantum Mechanics. Benjamin, New York. · Zbl 0114.44002
[10] Marchand, J.-P., and Wyss, W. (1977). ?Statistical Inference and Entropy,?Journal of Statistical Physics,16, 349-355.
[11] Piron, C. (1976).Foundations of Quantum Mechanics. Benjamin, New York. · Zbl 0333.46050
[12] Sakai, S. (1965). ?A Radon-Nikodym Theorem inW *-Algebras,?Bulletin of the American Mathematical Society,71, 149-151. · Zbl 0132.10803
[13] Varadarajan, V. (1968, 1970).Geometry of Quantum Theory, Vols. 1 and 2. Van Nostrand Reinhold, Princeton, New Jersey. · Zbl 0155.56802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.