zbMATH — the first resource for mathematics

Fibrés uniformes de rang élevé sur \(\mathbb{P}_ 2\). (French) Zbl 0483.14003

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
32L10 Sheaves and cohomology of sections of holomorphic vector bundles, general results
32L05 Holomorphic bundles and generalizations
Full Text: DOI Numdam EuDML
[1] J. M. DREZET, Fibrés uniformes sur P2, Thèse 3e cycle, (1980). · Zbl 0456.14012
[2] G. ELENCWAJG, LES fibrés uniformes de rang 3 sur P2(C) sont homogènes, Math. Ann., 231 (1978), 217-227. · Zbl 0378.14003
[3] G. ELENCWAJG, Des fibrés uniformes non homogènes, Math. Ann., 239 (1979), 185-192. · Zbl 0498.14007
[4] G. ELENCWAJG, Thèse de doctorat d’état, Nice (1979).
[5] G. ELENCWAJG et O. FORSTER, Bounding cohomology groups of vector bundles on pn, Math. Ann., 246 (1980), 251-270. · Zbl 0432.14011
[6] G. ELENCWAJG, A. HIRSCHOWITZ et M. SCHNEIDER, LES fibrés uniformes de rang au plus n sur pn(C) sont ceux qu’on croit, Proceedings of the Nice Conference 1979 on Vector Bundles and Differential equations, Birkhäuser, Boston, 1980. · Zbl 0456.32009
[7] R. HARTSHORNE, Algebraic geometry. Graduate texts in mathematics, Vol. 52, Berlin, Heidelberg, New-York, Springer-Verlag, 1977. · Zbl 0367.14001
[8] F. HIRZEBRUCH, Topological methods in algebraic geometry, 3rd ed. Berlin, Heidelberg, New-York. Springer Verlag 1966. · Zbl 0138.42001
[9] S. KLEIMAN, The enumerative theory of singularities, Real and Complex Singularities, Oslo 1976, Sÿthoff et Noordhoof (1977). · Zbl 0385.14018
[10] C. OKONEK, M. SCHNEIDER et H. SPINDLER, Vector bundles on complex projective spaces, Progress in Mathematics, 3, Boston, Basel, Stuttgart, Birkhäuser, 1980. · Zbl 0438.32016
[11] H. SPINDLER, Der satz von grauert-Mülich für beliebige semistabile holomorphe vektorraumbündel über dem n-dimensionalen komplex-projektiven raum, Math. Ann., 243 (1979), 131-141. · Zbl 0435.32018
[12] A. VAN DE VEN. On uniform vector bundles, Math. Ann., 195 (1972), 246-248. · Zbl 0215.43202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.