zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mixed formulation of elliptic variational inequalities and its approximation. (English) Zbl 0483.49003

49J40Variational methods including variational inequalities
65K10Optimization techniques (numerical methods)
35J20Second order elliptic equations, variational methods
Full Text: EuDML
[1] F. Brezzi W. W. Hager P. A. Raviart: Error estimates for the finite element solution of variational inequalities, Part II: Mixed methods. Numerische Mathematik, 131, 1978, pp. 1-16. · Zbl 0427.65077 · doi:10.1007/BF01396010 · eudml:132563
[2] J. Cea: Optimisation, théorie et algorithmes. Dunod, 1971. · Zbl 0211.17402
[3] I. Ekeland R. Temam: Analyse convexe et problèmes variationnels. Dunod, 1974, Paris. · Zbl 0281.49001
[4] R. Glowinski J. L. Lions R. Tremolieres: Analyse numérique des inéquations variationnelles. Vol. I., II. Dunod, 1976, Paris.
[5] J. Haslinger I. Hlaváček: Approximation of the Signorini problem with friction by the mixed finite element method. to appear in JMAA. · Zbl 0486.73099 · doi:10.1016/0022-247X(82)90257-8
[6] J. Haslinger J. Lovíšek: Mixed variational formulation of unilateral problems. CMUC 21, 2 (1980), 231-246. · Zbl 0428.65060 · eudml:17030
[7] J. Haslinger M. Tvrdý: Numerical solution of the Signorini problem with friction by FEM. to appear.