×

Mixed formulation of elliptic variational inequalities and its approximation. (English) Zbl 0483.49003


MSC:

49J40 Variational inequalities
65K10 Numerical optimization and variational techniques
35J20 Variational methods for second-order elliptic equations
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] F. Brezzi W. W. Hager P. A. Raviart: Error estimates for the finite element solution of variational inequalities, Part II: Mixed methods. Numerische Mathematik, 131, 1978, pp. 1-16. · Zbl 0427.65077 · doi:10.1007/BF01396010
[2] J. Cea: Optimisation, théorie et algorithmes. Dunod, 1971. · Zbl 0211.17402
[3] I. Ekeland R. Temam: Analyse convexe et problèmes variationnels. Dunod, 1974, Paris. · Zbl 0281.49001
[4] R. Glowinski J. L. Lions R. Tremolieres: Analyse numérique des inéquations variationnelles. Vol. I., II. Dunod, 1976, Paris. · Zbl 0358.65091
[5] J. Haslinger I. Hlaváček: Approximation of the Signorini problem with friction by the mixed finite element method. to appear in JMAA.
[6] J. Haslinger J. Lovíšek: Mixed variational formulation of unilateral problems. CMUC 21, 2 (1980), 231-246. · Zbl 0428.65060
[7] J. Haslinger M. Tvrdý: Numerical solution of the Signorini problem with friction by FEM. to appear.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.