×

\(L^ 2-\)lower semicontinuity of functionals of quadratic type. (English) Zbl 0483.49008


MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
49K10 Optimality conditions for free problems in two or more independent variables
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Carbone, L.; Sbordone, C., Some properties of Γ-limits of integral functionals, Annali di Matem. Pura Appl., (IV), 122, 1-60 (1979) · Zbl 0474.49016
[2] Coifman, R. R.; Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51, 241-250 (1974) · Zbl 0291.44007
[3] De Giorgi, E.; Franzoni, T., Su un tipo di convergenza variazionale, 842-850 (1975), Roma: Rend. Acc. Naz. Lincei, Roma
[4] De Giorgi, E.; Spagnolo, S., Sulla convergenza degli integrali dell’energia per operatori ellittici del 2∘ ordine, Boll. U.M.I., 8, 391-411 (1973) · Zbl 0274.35002
[5] I.Ekeland - R.Temam,Analyse convexe et problèmes variationnels, Dunod-Gauthier-Villars, 1974. · Zbl 0281.49001
[6] I.Gilbarg - N.Trudinger,Elliptic partial differential equations of second order, Springer Verlag, (1977). · Zbl 0361.35003
[7] F.Liu,A Luzin type property of Sobolev functions, Indiana University Math. Journal,26, no. 4 (1977). · Zbl 0368.46036
[8] P.Marcellini,Some problems of semicontinuity and of Γ-convergence for integrals of the Calculus of Variations, Proc. of the Int. Coll. «Metodi recenti di Analisi non lineare e Applicazioni», Roma, May 1978.
[9] Marcellini, P.; Sbordone, C., Homogeneization of non-uniformly elliptic operators, Applicable Analysis, 8, 101-113 (1978) · Zbl 0406.35014
[10] Meyers, N. G.; Serrin, J., H=W, Proc. Nat. Acad. Sci. U.S.A., 51, 1055-1056 (1964) · Zbl 0123.30501
[11] C. B.Morrey,Multiple integrals in the Calculus of Variations, Springer, 1966. · Zbl 0142.38701
[12] F.Murat,H-Convergence, Séminaire d’Analyse Fonctionnelle et Numerique 77-78 de l’Université d’Alger.
[13] Trudinger, N., Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa, 27, 265-308 (1973) · Zbl 0279.35025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.