×

zbMATH — the first resource for mathematics

Linearly ordered covers, normality and paracompactness. (English) Zbl 0483.54011

MSC:
54D20 Noncompact covering properties (paracompact, Lindelöf, etc.)
54D15 Higher separation axioms (completely regular, normal, perfectly or collectionwise normal, etc.)
PDF BibTeX Cite
Full Text: DOI
References:
[1] Aull, C.E., Paracompact subsets, Proc. second Prague topological symposium, 45-51, (1966)
[2] Dowker, C.H., On countably paracompact spaces, Canad. J. math., 1, 219-224, (1951) · Zbl 0042.41007
[3] Katuta, Y., A theorem on paracompactness of product spaces, Proc. Japan acad., 43, 615-618, (1967) · Zbl 0168.43602
[4] Krajewski, L., On expanding locally finite collections, Canad. J. math., 23, 58-68, (1971) · Zbl 0206.51503
[5] Michael, E.A., A note on paracompact spaces, Proc. amer. math. soc., 4, 831-838, (1953) · Zbl 0052.18701
[6] Michael, E.A., Another note on paracompact spaces, Proc. amer. math. soc., 8, 822-828, (1957) · Zbl 0078.14805
[7] Michael, E.A., Yet another note on paracompact spaces, Proc. amer. math. soc., 10, 309-314, (1959) · Zbl 0092.15403
[8] Michael, E.A., The product of a normal space and a metric space need not be normal, Bull. amer. math. soc., 69, 375-376, (1963) · Zbl 0114.38904
[9] Morita, K., On the product of paracompact spaces, Proc. Japan acad., 39, 559-563, (1963) · Zbl 0204.22702
[10] Tamano, H., Note on paracompactness, J. math. Kyoto univ., 3, 137-143, (1963) · Zbl 0141.39902
[11] Tamano, H., On some characterizations of paracompactness, (), 277-285
[12] Tamano, H.; Vaughan, J.E., Paracompactness and elastic spaces, Proc. amer. math. soc., 28, 299-303, (1971) · Zbl 0224.54021
[13] Telgársky, R., C-scattered and paracompact spaces, Fund. math., 73, 59-74, (1971) · Zbl 0226.54018
[14] Telgársky, R., Spaces defined by topological games, Fund. math., 88, 193-223, (1975) · Zbl 0311.54025
[15] Vaughan, J.E., Linearly ordered collections and paracompactness, Proc. amer. math. soc., 24, 186-192, (1970) · Zbl 0186.56102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.