On some properties of solutions of the second order linear differential equations with periodic coefficients having a common one-parametric continuous group of dispersions. (English) Zbl 0484.34028


34C25 Periodic solutions to ordinary differential equations
34A30 Linear ordinary differential equations and systems
Full Text: EuDML


[1] Borg G.: Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Acta Math. 78 (1946), 1-96. · Zbl 0063.00523
[2] Borůvka O.: Linear Differential Transformations of the Second Order. The English Univ. Press, London, 1971. · Zbl 0218.34005
[3] Борувка О.: Тєоруя глобалъных свойсмв обыкновєнных лунєйных дуффєрєнцуалъных уравнєнуй вморого порядка. Диффєрєнциальныє уравнєния, No 8, T. 12, 1976, 1347-1383.
[4] Borůvka O.: Lectures in the seminar of Matematický ústav ČSAV, Brno.
[5] Greguš M., Neuman F., Arscott F.: Three-point boundary value problems in differential equations. J. London Math. Soc. (2), 3 (1971), 429-436. · Zbl 0226.34010
[6] Hochstadt H.: On the determination for a Hill’s equation from its spectrum. Arch. Rational Mech. Anal., 19, No 5 (1965), 353-364. · Zbl 0128.31201
[7] Якубович В. А., Старжинский В. М.: Лунєйныє дуффєрєнцуалъныє уравнєнуя с пєруодучєскуму коэффуцуєнмаму у ух пруложєнуя. Изд. ”Наука”, Москва 1970.
[8] Magnus W., Winkler S.: Hill’s Equation. Interscience Publishers, New York, 1966. · Zbl 0158.09604
[9] Neuman F.: On the Liouville transformation. Rend. Mat., Serie VI, 3 (1970), 1-8. · Zbl 0241.34005
[10] Ungar P.: Stable Hill equations. Comm. Pure Appl. Math., XIV (1961), 707-710. · Zbl 0123.05005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.