Almost periodic Schrödinger operators. I: Limit periodic potentials. (English) Zbl 0484.35069


35P25 Scattering theory for PDEs
35J10 Schrödinger operator, Schrödinger equation
81Q15 Perturbation theories for operators and differential equations in quantum theory
47A40 Scattering theory of linear operators
47B25 Linear symmetric and selfadjoint operators (unbounded)
35B15 Almost and pseudo-almost periodic solutions to PDEs


Zbl 0477.34018
Full Text: DOI


[1] Avron, J., Simon, B.: The asymptotics of the gap in the Mathieu equation. Ann. Phys.134, 76-84 (1981) · Zbl 0464.34020
[2] Avron, J., Simon, B.: Transient and recurrent spectrum. J. Funct. Anal. (to appear) · Zbl 0488.47021
[3] Avron, J., Simon, B.: In preparation
[4] Berezanski, J.M.: Expansion in eigenfunctions of self-adjoint operators. Am. Math. Soc. Providence (1968) · Zbl 0157.16601
[5] Choquet, G.: Lectures in analysis. I. New York: Benjamin 1969 · Zbl 0181.39602
[6] Davis, E.B., Simon, B.: Commun. Math. Phys.63, 277-301 (1978) · Zbl 0393.34015
[7] Deift, P.: Private communication
[8] Dubrovin, B.: The periodic problem for KdV equation in the class of finite zone potentials. Funkt. Anal. Pril.9 (3), 215-223 (1975) · Zbl 0358.35022
[9] Eastham, M.: The spectral theory of periodic differential equations. Edinburgh: Scottish Academic Press 1973 · Zbl 0287.34016
[10] Gel’fand, I.: Dokl. Akad. Nauk73, 117-1120 (1950)
[11] Hochstadt, H.: Proc. Am. Math. Soc.14, 930-932 (1963)
[12] Johnson, R.: The recurrent Hill’s equation. U.S.C. (preprint) · Zbl 0535.34021
[13] Johnson, R.: In preparation
[14] Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0148.12601
[15] Kovanlenko, V., Semenov, Yu.: Russ. Math. Surv.33, 119-157 (1978) · Zbl 0413.47011
[16] Magnus, W., Winkler, S.: Hill’s equation. New York: Interscience 1966 · Zbl 0158.09604
[17] Moser, J.: An example of a Schrödinger equation with almost periodic potential and nowhere dense spectrum. ETH (preprint) · Zbl 0477.34018
[18] Moser, J.: Private communication
[19] Pastur, L.: Commun. Math. Phys.75, 179-186 (1980) · Zbl 0429.60099
[20] Reed, M., Simon, B.: Methods of modern mathematical physics. I. Functional analysis. London, New York: Academic Press 1972 · Zbl 0242.46001
[21] Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. London, New York: Academic Press 1978 · Zbl 0401.47001
[22] Simon, B.: Ann. Inst. H. Poincaré A24, 91-93 (1976)
[23] Simon, B.: Schrödinger semigroups (in preparation)
[24] Thomas, L.: Commun. Math. Phys.33, 335-343 (1973)
[25] Trubowitz, E.: Commun. Pure Appl. Math.30, 321-337 (1977) · Zbl 0403.34022
[26] Grossmann, A.: Statistical mechanics and field theory. Sen, R.N., Weil, C. (eds.). Jerusalem: Israel University Press 1972
[27] Blount, E.I.: Solid State Physics13. London, New York: Academic Press 1961
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.