×

Subspaces and quotients of \(l_ p\) + \(l_ 2\) and \(X_ p\). (English) Zbl 0484.46020


MSC:

46B20 Geometry and structure of normed linear spaces
46B25 Classical Banach spaces in the general theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alspach, D., Enflo, P. &Odell, E., On the structure of separableL p spaces (1<p<Studia Math., 60 (1977), 79–90. · Zbl 0343.46017
[2] Bourgain, J., Rosenthal, H. P. & Schechtman, G., An ordinalL p -index for Banach spaces, with application to complemented subspaces ofL p . · Zbl 0496.46010
[3] Casazza, P. G. &Lin, B.-L., Projections on Banach spaces with symmtric bases.Studia Math., 52 (1974), 189–193. · Zbl 0266.46016
[4] Edelstein, I. &Wojtaszczyk, P., On projections and unconditional bases in direct sums of Banach spaces.Studia Math., 56 (1976), 263–276. · Zbl 0362.46017
[5] Johnson, W. B., On quotients ofL p which are quotients ofl p Compositio Math., 34 (1977), 69–89. · Zbl 0375.46023
[6] –, Operators intoL p which factor throughl p .J. London Math. Soc., Ser. 2, 14 (1976), 333–339. · Zbl 0413.47025
[7] Johnson, W. B. &Jones, L., EveryL p operator is anL 2 operator.Proc. Amer. Math. Soc. 72 (1978), 309–312. · Zbl 0391.46026
[8] Johnson, W. B., Maurey, B., Schechtman, G. & Tzafriri, L., Symmetric structures in Banach spaces.Mem. Amer. Math. Soc., 217 (1979). · Zbl 0421.46023
[9] Johnson, W. B. &Odell, E., Subspaces ofL p which embed intol p .Compositio Math., 28 (1974), 37–49. · Zbl 0282.46020
[10] Johnson, W. B., Rosenthal, H. P. &Zippin, M., On bases, finite dimensional decompositions and weaker structures in Banach spaces.Israel J. Math., 9 (1971), 488–506. · Zbl 0217.16103
[11] Johnson, W. B. &Zippin, M., On subspaces of quotients of ({\(\Sigma\)}G n ) l p and ({\(\Sigma\)}G n ) c o .Israel J. Math., 13 (1972), 311–316.
[12] – Subspaces and quotient spaces of ({\(\Sigma\)}G n )l p and ({\(\Sigma\)}G n )c o .Israel J. Math., 17 (1974), 50–55. · Zbl 0282.46015
[13] Kadec, M. &Pelczynski, A., Bases, lacunary sequences and complemented subspaces in the spacesL p .Studia Math., 21 (1962), 161–176.
[14] Lindenstrauss, J. & Tzafriri, L.,Classical Banach Spaces I, Sequence Spaces. Ergebnisse 92, Springer-Verlag (1977). · Zbl 0362.46013
[15] Lindenstrauss, J. Classical Banach Spaces II, Function Spaces. Ergebnisse 97, Springer-Verlag (1979). · Zbl 0403.46022
[16] Maurey, B., Théorèmes de factorisation pour les operateurs linéaires a valeurs dans les espacesL p .Asterisque, #11, Soc. Math. de France. Paris (1974). · Zbl 0278.46028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.