×

zbMATH — the first resource for mathematics

On transverse foliations. (English) Zbl 0484.57016

MSC:
57R30 Foliations in differential topology; geometric theory
57M25 Knots and links in the \(3\)-sphere (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] A. Davis andF. W. Wilson, Jr., Vector fields tangent to foliations 1: Reeb foliations,Jour. Differential equations, 11 (1972), 491–498. · Zbl 0242.57012 · doi:10.1016/0022-0396(72)90061-7
[2] N. Kopell, Commuting Diffeomorphisms, Global Analysis,Proc. Symp. Pure Math., XIV, A.M.S., 1970, Providence. · Zbl 0225.57020
[3] J. Milnor,Singular points of complex hypersurfaces, Ann. of Math. Studies, 61, Princeton, 1968. · Zbl 0184.48405
[4] S. P. Novikov, Topology of foliations,Trudy Moskov. Mat. Obšč., 14 (1965), 248–278,A.M.S. Transl., 1967, 286–304.
[5] G. Reeb,Sur certaines propriétés topologiques des variétés feuilletées, Act. Sci. Ind., No. 1183, Hermann, Paris, 1952.
[6] B. L. Reinhart, Line elements on the torus,Amer. J. Math., 81 (1959), 617–631. · Zbl 0098.29006 · doi:10.2307/2372918
[7] E. Silberstein, Multifoliations on M n \(\times\) S1 where M n is a stably parallelizable manifold,Proc. London Math. Soc., (3), 35 (1977), 463–482. · Zbl 0382.57009 · doi:10.1112/plms/s3-35.3.463
[8] I. Tamura, Foliations and spinnable structures on manifolds,Ann. Inst. Fourier, 23 (1973), 197–214. · Zbl 0269.57012
[9] W. Thurston,Foliations of three-manifolds which are circle bundles, Thesis, Univ. of California, Berkeley, 1972.
[10] W. Thurston, Non-cobordant foliations of S3,Bull. Amer. Math. Soc., 78 (1972), 511–514. · Zbl 0266.57004 · doi:10.1090/S0002-9904-1972-12975-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.