×

zbMATH — the first resource for mathematics

Amenability, Kazhdan’s property T, strong ergodicity and invariant means for ergodic group-actions. (English) Zbl 0485.28019

MSC:
28D15 General groups of measure-preserving transformations
47A35 Ergodic theory of linear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BF01673506 · Zbl 0398.28021 · doi:10.1007/BF01673506
[2] DOI: 10.1007/BF02760962 · Zbl 0479.28017 · doi:10.1007/BF02760962
[3] DOI: 10.1016/0022-1236(78)90013-7 · Zbl 0391.28011 · doi:10.1016/0022-1236(78)90013-7
[4] DOI: 10.1007/BF02760961 · Zbl 0485.28018 · doi:10.1007/BF02760961
[5] Schmidt, Math. Z. 167 pp 169– (1979)
[6] Schmidt, Cocycles of Ergodic Transformation Groups (1977) · Zbl 0421.28017
[7] DOI: 10.2307/1997924 · Zbl 0369.22009 · doi:10.2307/1997924
[8] DOI: 10.1112/plms/s3-40.3.443 · Zbl 0428.28014 · doi:10.1112/plms/s3-40.3.443
[9] DOI: 10.1007/BFb0063127 · doi:10.1007/BFb0063127
[10] Parthasarathy, Probability Measures on Metric Spaces (1967) · Zbl 0153.19101 · doi:10.1016/B978-1-4832-0022-4.50006-5
[11] DOI: 10.1112/blms/13.2.145 · Zbl 0462.43002 · doi:10.1112/blms/13.2.145
[12] Greenleaf, Invariant Means on Topological Groups (1969)
[13] DOI: 10.1007/BF01637024 · Zbl 0384.28017 · doi:10.1007/BF01637024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.