Dieudonné, Jean Éléments d’analyse. Tome IX. Chapitre XXIV. (French) Zbl 0485.58001 Cahiers Scientifiques, Fasc. XLII. Publie avec le concours du C. N. R. S. Paris: Gauthier-Villars. XVIII, 380 p. FF 320.00 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 10 Documents MSC: 58-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to global analysis 55-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to algebraic topology 58A12 de Rham theory in global analysis 55Rxx Fiber spaces and bundles in algebraic topology 58A14 Hodge theory in global analysis 58A10 Differential forms in global analysis 20G10 Cohomology theory for linear algebraic groups 17B56 Cohomology of Lie (super)algebras 57Q05 General topology of complexes 55N10 Singular homology and cohomology theory 53C05 Connections (general theory) 14F40 de Rham cohomology and algebraic geometry 14H05 Algebraic functions and function fields in algebraic geometry 58J10 Differential complexes 58J20 Index theory and related fixed-point theorems on manifolds Keywords:homology and the cohomology of differentiable manifolds and fibre spaces; cohomology with compact supports; Mayer-Vietoris sequences; Kuenneth theorem; Poincare duality; degree theory; intersection numbers; Stokes formula; algebraic equations; intersections of algebraic curves; homology of cellular currents; simplicial spaces; simplicial currents; Gysin exact sequence; Euler class; cohomology of Grassmann manifolds; characteristic classes; Chern classes; Pontrjagin classes; Stiefel-Whitney classes; elliptic complexes of pseudo-differential operators; Atiyah-Bott- Lefschetz formula; Hopf formula for vector fields; formulas of Bott for characteristic classes; cohomology of a Lie group Citations:Zbl 0189.055; Zbl 0208.318; Zbl 0217.001; Zbl 0326.22001; Zbl 0303.43001; Zbl 0402.58011; Zbl 0393.35001 PDF BibTeX XML OpenURL