Acceleration by aggregation of successive approximation methods. (English) Zbl 0485.65023


65F10 Iterative numerical methods for linear systems
65B05 Extrapolation to the limit, deferred corrections
Full Text: DOI


[1] Beneu, J., Résolution des systèmes d’équations linéaires par la méthode des compensations, ()
[2] Brandt, A., Multi-level adaptive solutions to boundary value problems, Math. comp., 31, 333-390, (1977) · Zbl 0373.65054
[3] Froehlich, R., A theoritical foundation for coarse mesh variational techniques, General atomic ref. GA-78-70, (1967)
[4] Gastinel, N., Sur certains procédés itératifs non linéaires de résolution de systèmes d’équations du 1^{e} degré, (), 97-101 · Zbl 0135.37502
[5] Hackbusch, W., On the multi-grid method applied to difference equations, Computing, 20, 291-306, (1978) · Zbl 0391.65045
[6] Householder, A.S.; Bauer, F.L., On certain iterative methods for solving linear systems, Numer. math., 2, 55-59, (1960) · Zbl 0168.13501
[7] Krasnoselskii, M.A.; Vainikko, G.M., Approximate solution of operator equations, (1972), Wolters-Noordhoff Groningen
[8] Miranker, W.L., Hierarchical relaxation, Computing, 23, 267-285, (1979) · Zbl 0404.68034
[9] Miranker, W.L.; Pan, V.Ya., Methods of aggregation, Linear algebra appl., 29, 231-257, (1980) · Zbl 0496.65010
[10] Nakamura, S., Analysis of the coarse-mesh rebalancing effect on Chebyshev polynomial iterations, Nuclear science eng., 61, 98-106, (1975)
[11] Settari, A.; Aziz, K., A generalization of the additive correction methods for the iterative solution of matrix equations, SIAM J. numer. anal., 10, 506-521, (1973) · Zbl 0256.65020
[12] Sloan, I.H., Error analysis for a class of degenerate kernel methods, Numer. math., 25, 231-238, (1976) · Zbl 0304.65092
[13] Vakhutinsky, I.Y.; Dudkin, L.M.; Ryvkin, A.A., Iterative aggregation—A new approach to the solution of large scale problems, Econometrica, 47, 821-841, (1979) · Zbl 0429.90037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.