×

A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations. (English) Zbl 0485.65087


MSC:

65R20 Numerical methods for integral equations
65-02 Research exposition (monographs, survey articles) pertaining to numerical analysis
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
45J05 Integro-ordinary differential equations
45D05 Volterra integral equations

Software:

Algorithm 627
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] (), A. Monographs, proceedings, surveys
[2] (), Canberra, December 1978
[3] (), ISNM
[4] Baker, C.T.H., The numerical treatment of integral equations, (1977), Clarendon Press Oxford · Zbl 0217.53103
[5] Brunner, H., The approximate solution of integral equations by projection methods based on collocation (lecture notes), ()
[6] ()
[7] ()
[8] Kagiwada, H.H.; Kalaba, R., Integral equations via imbedding methods, (1974), Addison-Wesley Reading (Mass.) · Zbl 0331.45001
[9] Krasnov, M.L.; Kissélev, A.I.; Makarenko, G.I., Equations intégrales: problèmes et ex≐rcises, (1977), Editions Mir Moscow · Zbl 0528.45001
[10] (), Lecture Notes Math.
[11] Miller, R.K., Nonlinear Volterra integral equations, (1971), Benjamin Menlo Park (Cal.) · Zbl 0209.14202
[12] Noble, B., A bibliography on “methods for solving integral equations”, () · Zbl 0207.17005
[13] ()
[14] Tsalyuk, Z.B., Volterra integral equations, J. soviet mathematics, Vol. 12, 715-758, (1979) · Zbl 0439.45001
[15] Zabreyko, P.P., Integral equations — A reference text, (1975), Noordhoff Leiden
[16] Baker, C.T.H., Methods for Volterra equations of the first kind, (), 162-174
[17] Baker, C.T.H., Methods for integro-differential equations, (), 189-206
[18] Baker, C.T.H., Initial value problems for Volterra integro-differential equations, (), 296-307
[19] Brunner, H., The application of the variation of constants formulas in the numerical analysis of integral and integro-differential equations, Utilitas math., Vol. 19, 255-290, (1981) · Zbl 0483.65034
[20] Cryer, C.W., Numerical methods for functional differential equations, (), 17-101 · Zbl 0575.65119
[21] Elliott, D., Integral equations — ninety years on, (), 1-20
[22] Golberg, M.A., A survey of numerical methods for integral equations, (), 1-58 · Zbl 0434.65100
[23] Gorenflo, R., Numerical treatment of Abel integral equations, (), 125-133
[24] Kershaw, D., Volterra equations of the second kind, (), 140-161
[25] Linz, P., A survey of methods for the solution of Volterra integral equations of the first kind, (), 183-194
[26] Noble, B., The numerical solution of nonlinear integral equations and related topics, (), 215-318
[27] Noble, B., The numerical solution of integral equations, (), 915-966
[28] Te Riele, H.J.J., Introduction and global survey of numerical methods for integral equations, (), 3-25
[29] (), B. Recent doctoral dissertations
[30] Amini, S., An analysis of stability behavior in the numerical treatment of certain Volterra integral equations, (1980), University of Manchester
[31] Benson, M., Errors in numerical quadrature for certain singular integrands and the numerical solution of Abel integral equations, (1973), University of Wisconsin Madison
[32] Branca, H.-W., Die nichtlineare Volterra integralgleichung vom Abel’schen typ und ihre numerische behandlung, (1976), Universität Köln Köln
[33] Campbell, G.M., On the numerical solution of Volterra integral equations, (1970), Pennsylvania State University University Park · Zbl 0196.17905
[34] Chamayou, J.M.F., L’équation de Volterra de la théorie statistique de la création de paires de Frenkel dans un solide soumis à une irradiation neutronique, (1973), Université Paul Sabatier Toulouse
[35] Esser, R., Numerische Lösung einer verallgemeinerten volterraschen integralgleichung zweiter art, (1976), Universität Köln Köln
[36] Garey, L., Numerical methods of solution for Volterra integral equations, (1971), Dalhousie University Halifax, N.S
[37] Gladwin, C.J., Numerical solution of Volterra integral equations of the first kind, (1975), Dalhousie University Halifax, N.S · Zbl 0321.65063
[38] Goldfine, A., The numerical solution of Volterra integral and integro-differential equations, (1973), Pennsylvania State University University Park
[39] Hock, W., Asymptotische entwicklungen bei mehrschrittverfahren zur numerischen behandlung von Volterra-integralgleichungen, (1977), Universität Würzburg Würzburg
[40] Holyhead, P.A.W., Direct methods for the numerical solution of Volterra integral equations of the first kind, (1976), University of Southampton Southampton · Zbl 0324.65059
[41] Hung, H.-S., The numerical solution of differential and integral equations by spline functions, (1970), University of Wisconsin Madison
[42] Jakeman, A.J., Numerical inversion of Abel type integral equations in stereology, (1975), Australian National University Canberra
[43] Keech, M.S., Stability in the numerical solution of initial value problems in integral equations, (1977), University of Manchester Manchester
[44] Kumar, S., Numerical methods for Volterra and singular integral equations, (1981), India Institute of Technology Delhi
[45] Linz, P., Numerical methods for Volterra integral equations with applications to certain boundary value problems, (1968), University of Wisconsin Madison
[46] Logan, J.E., The approximate solution of Volterra integral equations of the second kind, (1976), University of Iowa Iowa City
[47] Lubich, C., Numerische behandlung Volterra’scher integrodifferentialgleichungen, (1981), Diplomarbeit, Universität Innsbruck Innsbruck
[48] Makroglou, A., Numerical solution of Volterra integro-differential equations, (1977), University of Manchester Manchester · Zbl 0786.65122
[49] Phillips, C., Numerical solution of Volterra integral equations of the second kind by step-by-step methods, (1977), University of Liverpool Liverpool
[50] Smit, J.H., Two-sided error bounds in the numerical solution of generalized Volterra integro-differential equations, (1976), University of Leiden
[51] Smith, H.L., On periodic solutions of delay integral equations modelling epidemics and population growth, (1975), University of Iowa Iowa City
[52] Weiss, P.R., Numerical solutions of Volterra integral equations, (1978), Carnegie-Mellon University Pittsburgh
[53] Weiss, R., Numerical procedures for Volterra integral equations, (1972), Australian National University Canberra
[54] Williams, H.M., Variable step-size predictor-corrector schemes for Volterra second kind integral equations, (1980), University of Oxford Oxford
[55] Wolkenfelt, P.H.M., The numerical analysis of reducible quadrature methods for Volterra integral and integro-differential equations, (1981), Mathematisch Centrum Amsterdam · Zbl 0466.65073
[56] Abdalkhani, J., Collocation and Runge-Kutta-type methods for Volterra integral equations with weakly singular kernels, (1982), Dalhousie University Halifax, Nova Scotia · Zbl 0539.65093
[57] Cameron, R.F., Direct solution of applicable Volterra integral equations, (1981), University of Oxford · Zbl 0468.73103
[58] Eggermont, P.P.B., Special discretization methods for the integral equation of image reconstruction and for Abel-type integral equations, (1980), State University of New York Buffalo, C. Volterra integral equations of the second kind · Zbl 0443.44001
[59] Amini, S.; Baker, C.T.H.; Wilkinson, J.C., Basic stability analysis of Runge-Kutta methods for Volterra integral equations of the second kind, ()
[60] Aparo, E., Sulla risoluzione numerica delle equazioni integrali di Volterra di seconda specie, Atti acad. naz. lincei rend. cl. sci. fis. math. natur., Vol. 26, 183-188, (1959) · Zbl 0091.12202
[61] Baker, C.T.H., Runge-Kutta methods for Volterra integral equations of the second kind, (), 1-13 · Zbl 0217.53103
[62] Baker, C.T.H., Numerical integration in the treatment of integral equations, (), 44-53
[63] Baker, C.T.H., Structure of recurrence relations in the study of stability in the numerical treatment of Volterra equations, J. integral equations, Vol. 2, 11-29, (1980) · Zbl 0448.65083
[64] Baker, C.T.H.; Keech, M.S., Stability regions in the numerical treatment of Volterra integral equations, SIAM J. numer. anal., Vol. 15, 394-417, (1978) · Zbl 0409.65056
[65] Baker, C.T.H.; Keech, M.S., Stability analysis of certain Runge-Kutta procedures for Volterra integral equations, ACM trans. math. software, Vol. 4, 305-315, (1978) · Zbl 0407.65054
[66] Baker, C.T.H.; Riddell, I.J.; Keech, M.S.; Amini, S., Runge-Kutta methods with error estimates for Volterra integral equations of the second kind, (), 24-42 · Zbl 0438.65108
[67] Bel’tyukov, B.A., An analogue of the Runge-Kutta method for the solution of nonlinear integral equations of Volterra type, Differential equations, Vol. 1, 417-433, (1965)
[68] Bel’tyukov, B.A.; Kuznechikhina, L.N., A Runge-Kutta method for the solution of two-dimensional nonlinear Volterra integral equations, Differential equations, Vol. 12, 1169-1173, (1976) · Zbl 0404.65066
[69] Bownds, J.M., On an initial-value method for quickly solving Volterra integral equations: a review, (), Vol. 24, 225-243, (1978)
[70] Golberg, M.A., On a method of bownds for solving Volterra integral equations, (), Vol. 24, 245-256, (1978) · Zbl 0349.65066
[71] Bownds, J.M., A combined recursive collocation and kernel approximation technique for certain singular Volterra integral equations, J. integral equations, Vol. 1, 153-164, (1979) · Zbl 0443.65099
[72] Wood, B., Observations on the combined recursive collocation and kernel approximation technique for solving Volterra integral equations, (), 919-925
[73] Bownds, J.M.; Wood, B., On numerically solving nonlinear Volterra integral equations with fewer computations, SIAM J. numer. anal., Vol. 13, 705-719, (1976) · Zbl 0404.65064
[74] Bownds, J.M.; Wood, B., A smoothed projection method for singular, nonlinear Volterra equations, J. approximation theory, Vol. 25, 120-141, (1979) · Zbl 0405.45008
[75] Brunner, H., The solution of nonlinear Volterra integral equations by piecewise polynomials, (), 65-78
[76] BRUNNER H.: Superconvergence in collocation and implicit Runge-Kutta methods for Volterra-type integral equations of the second kind, in [A1], pp. 54-72.
[77] Brunner, H.; Evans, M.D., Piecewise polynomials collocation for Volterra-type integral equations of the second kind, J. inst. math. appl., Vol. 20, 415-423, (1977) · Zbl 0382.65065
[78] Brunner, H.; Hairer, E.; Nørsett, S.P., Runge-Kutta theory for Volterra integral equations of the second kind, (), (To appear in Math. Comp.) · Zbl 0496.65066
[79] Brunner, H.; Nørsett, S.P., Superconvergence of collocation methods for Volterra and Abel integral equations of the kind, Numer. math., Vol. 36, 347-358, (1981) · Zbl 0442.65125
[80] Brunner, H.; Nørsett, S.P.; Wolkenfelt, P.H.M., On V_{0}-stability of numerical methods for Volterra integral equations of the second kind, () · Zbl 0435.65103
[81] Clarysse, J.H., Rational predictor-corrector methods for nonlinear Volterra integral equations of the second kind, (), 278-294
[82] Coroian, I., On the Runge-Kutta-fehlberg method regarding the nonlinear integral equation of the Volterra type, Stud. cerc. mat., Vol. 26, 505-511, (1974) · Zbl 0296.65056
[83] Day, J.T., A starting method for solving nonlinear Volterra integral equations, Math. comp., Vol. 21, 179-188, (1967) · Zbl 0152.15001
[84] El Tom, M.E.A., Application of spline functions to systems of Volterra integral equations of the first and second kinds, J. inst. math. appl., Vol. 17, 295-310, (1976) · Zbl 0323.45009
[85] Esser, R., Numerische behandlung einer volterraschen integralgleichung, Computing, Vol. 19, 269-284, (1978) · Zbl 0374.65067
[86] Filippi, S.; Schoedon, P.M., Explizite klassiche und Hermite’sche Runge-Kutta-verfahren zur numerischen Lösung von nichtlinearen Volterra-integralgleichungen, (), 64-81, No. 93 · Zbl 0219.65098
[87] Fox, L.; Goodwin, E.T., The numerical solution of nonsingular linear integral equations, Phil. trans. roy. soc. ser. A, Vol. 245, 501-534, (1952) · Zbl 0050.12902
[88] Gamondi, G.; Italiani, M., Sull’analisi numerica delle equazioni integrali di Volterra, Calcolo, Vol. 2, 249-266, (1965) · Zbl 0137.33405
[89] Garey, L., Predictor-corrector methods for nonlinear Volterra integral equations of the second kind, Bit, Vol. 12, 325-333, (1972) · Zbl 0246.65033
[90] Garey, L., The numerical solution of Volterra integral equations with singular kernels, Bit, Vol. 14, 33-39, (1974) · Zbl 0287.65067
[91] Garey, L., Solving nonlinear second kind Volterra equations by modified increment methods, SIAM J. numer. anal., Vol. 12, 501-508, (1975) · Zbl 0311.65071
[92] Grundy, R.E., The solution of Volterra integral equations of the convolution type using two-point rational approximants, J. inst. math. appl., Vol. 22, 147-158, (1978) · Zbl 0386.65054
[93] Hock, W., Asymptotic expansions for multistep methods applied to nonlinear Volterra integral equations of the second kind, Numer. math., Vol. 33, 77-100, (1979) · Zbl 0393.65051
[94] HOCK W.: Ein Extrapolationsverfahren für Volterra-Integralgleichungen 2. Art, in [A1], pp. 102-114.
[95] De Hoog, F.; Weiss, R., Asymptotic expansions for product integration, Math. comp., Vol. 27, 295-306, (1973) · Zbl 0303.65023
[96] De Hoog, F.; Weiss, R., High order methods for a class of Volterra integral equations with weakly singular kernels, SIAM J. numer. anal., Vol. 11, 1166-1180, (1974) · Zbl 0292.65067
[97] De Hoog, F.; Weiss, R., Implicit Runge-Kutta methods for second kind Volterra integral equations, Numer. math., Vol. 23, 199-213, (1975) · Zbl 0313.65117
[98] Van Der Houwen, P.J., On the numerical solution of Volterra integral equations of the second kind, () · Zbl 0372.65053
[99] Van Der Houwen, P.J., Convergence and stability results in Runge-Kutta type methods for Volterra integral equations of the second kind, Bit, Vol. 20, 375-377, (1980) · Zbl 0472.65095
[100] Van der Houwen, P.J.; Blom, J.G., On the numerical solution of Volterra integral equations of the second kind. II: Runge-Kutta methods, () · Zbl 0408.65078
[101] Van Der Houwen, P.J.; Te Riele, H.J.J., Backward differentiation type formulas for Volterra integral equations of the second kind, Numer. math., Vol. 37, 205-217, (1981) · Zbl 0442.65124
[102] Van Der Houwen, P.J.; Wolkenfelt, P.H.M., On the stability of multistep formulas for Volterra integral equations of the second kind, Computing, Vol. 24, 341-347, (1980) · Zbl 0413.65085
[103] Van Der Houwen, P.J.; Wolkenfelt, P.H.; Baker, C.T.H., Convergence and stability analysis for modified Runge-Kutta methods in the numerical treatment of second kind Volterra integral equations, (), 303-328, IMA J. Numer. Anal. · Zbl 0465.65071
[104] Kobayasi, M., On numerical solution of the Volterra integral equations of the second kind by linear multistep methods, Rep. statist. appl. res. un. Japan. sci. engrs., Vol. 13, 1-21, (1966) · Zbl 0173.45101
[105] Linz, P., Numerical methods for Volterra integral equations with singular kernels, SIAM J. numer. anal., Vol. 6, 365-374, (1969) · Zbl 0185.42404
[106] Linz, P., A method for solving nonlinear Volterra integral equations of the second kind, Math. comp., Vol. 23, 595-600, (1969) · Zbl 0177.20601
[107] Lomakovič, A.N.; Iščuk, V.A.; Baker, C.T.H.; Keech, M.S.; Sermer, P., The approximate solution of certain nonlinear Volterra type integral equations by a bilateral method of Runge-Kutta-fehlberg form (in Russian), (), Vol. 23, 29-40, (1974), appeared as
[108] Lomakovič, A.N.; Vasilenko, A.P., The solution of Volterra type integral equations by a method of the Runge-Kutta form, Differential equations, Vol. 4, 1083-1087, (1968) · Zbl 0241.65084
[109] Maccamy, R.C.; Weiss, P., Numerical solution of Volterra integral equations, Nonlinear anal., Vol. 3, 677-695, (1979) · Zbl 0441.65105
[110] Malina, L., A-stable methods of high order for Volterra integral equations, Apl. math., Vol. 20, 336-344, (1975) · Zbl 0336.45016
[111] McKee, S.; Brunner, H., The repetition factor and numerical stability of Volterra integral equations, Comput. math. appl., Vol. 6, 339-347, (1980) · Zbl 0458.65109
[112] Micula, G., Numerische behandlung der Volterra-integralgleichungen mit splines, Studia univ. babes-bolyai math., Vol. 24, 46-54, (1979) · Zbl 0437.65102
[113] Netravali, A.N., Spline approximation to the solution of the Volterra integral equation of the second kind, Math. comp., Vol. 27, 99-106, (1973) · Zbl 0264.65077
[114] Nevanlinna, O., Positive quadratures for Volterra equations, Computing, Vol. 16, 349-357, (1976) · Zbl 0326.65016
[115] Nevanlinna, O.; Nevanlinna, O., On the numerical solution of some Volterra equations on infinite intervals, (), Rev. anal. numér. théorie approximation, Vol. 5, 31-57, (1976), See also · Zbl 0356.65116
[116] Noble, B., Instability when solving Volterra integral equations of the second kind by multistep methods, (), 23-39 · Zbl 0207.17005
[117] Oulès, H., Résolution numérique d’une équation intégrale singulière, Rev. française traitement inform (chiffres), Vol. 7, 117-124, (1964) · Zbl 0134.32901
[118] Phillips, G.M., An error estimate for Volterra integral equations, Bit, Vol. 11, 181-186, (1971) · Zbl 0226.65082
[119] Porath, G.; Tabbert, E., Das tschebyscheffsche iterationsverfahren für lineare volterrasche integralgleichungen zweiter art, Beiträge numer. math., Vol. 7, 83-96, (1979) · Zbl 0403.65055
[120] Pouzet, P., Étude en vue du traitement numérique des équations intégrales de type Volterra, Rev. française traitement inform. (chiffres), Vol. 6, 79-112, (1963) · Zbl 0114.32405
[121] Te Riele, H.J.J., Collocation methods for weakly singular second kind Volterra integral equations with non-smooth solution, () · Zbl 0464.65093
[122] Steinberg, J., Numerical solution of Volterra integral equations, Numer. math., Vol. 19, 212-217, (1972) · Zbl 0226.65083
[123] Wolkenfelt, P.H.M., Linear multistep methods and the construction of quadrature formulae for Volterra integral and integro-differential equations, () · Zbl 0426.65075
[124] WOLKENFELT, P. H. M.: On the relation between the repetition factor and numerical stability of direct quadrature methods for second kind Volterra integral equations, to appear in SIAM J. Numer. Anal. · Zbl 0526.65094
[125] Wolkenfelt, P.H.M., The construction of reducible quadrature rules for Volterra integral and integro-differential equations, (), (To appear in IMA J. Numer. Anal.) · Zbl 0481.65084
[126] Wolkenfelt, P.H.M., Modified multilag methods for Volterra functional equations, () · Zbl 0456.65074
[127] Wolkenfelt, P.H.M.; Van der Houwen, P.J.; Baker, C.T.H., Analysis of numerical methods for second kind Volterra equations by imbedding techniques, J. integral equations, Vol. 3, 61-82, (1981) · Zbl 0451.65098
[128] Brunner, H.; Te Riele, H.J.J., Volterra-type integral equations of the second kind with non-smooth solutions: high-order methods based on collocation techniques, () · Zbl 0473.65097
[129] Hairer, E.; Lubich, Ch.; Nørsett, S.P., Order of convergence of one-step methods for Volterra integral equations of the second kind, (), Preprint Nr. 137 · Zbl 0519.65088
[130] Hock, W., An extrapolation method with step-size control for nonlinear Volterra integral equations, Numer. math., Vol. 38, 155-178, (1981) · Zbl 0462.65072
[131] Van Der Houwen, P.J., A-stable Runge-Kutta methods for Volterra integral equations of the second kind, () · Zbl 0422.65071
[132] Wolkenfelt, P.H.M., On the numerical stability of reducible quadrature methods for second kind Volterra integral equations, Z. angew. math. mech., Vol. 61, 399-401, (1981), D. Volterra integral equations of the first kind · Zbl 0466.65073
[133] Andrade, C.; McKee, S., On optimal high accuracy linear multistep methods for first kind Volterra integral equations, Bit, Vol. 19, 1-11, (1979) · Zbl 0402.65068
[134] Atkinson, K.E., The numerical solution of an Abel integral equation by a product trapezoidal method, SIAM J. numer. anal., Vol. 11, 97-101, (1974) · Zbl 0241.65085
[135] Branca, H.-W., The nonlinear Volterra equation of Abel’s kind and its numerical treatment, Computing, Vol. 20, 307-324, (1978) · Zbl 0394.65047
[136] Bownds, J.M.; Bownds, J.M., On solving weakly singular Volterra equations of the first kind with Galerkin approximations, Math. comp., Corrigendum: math. comp., Vol. 31, 808-757, (1977) · Zbl 0365.45005
[137] Brunner, H., Global solution of the generalized Abel integral equation by implicit interpolation, Math. comp., Vol. 28, 61-67, (1974) · Zbl 0356.65113
[138] Brunner, H., Projection methods for the approximate solution of integral equations of the first kind, (), 3-23
[139] Brunner, H., Discretization of Volterra integral equations of the first kind, Math. comp., Vol. 31, 708-716, (1977) · Zbl 0372.65052
[140] Brunner, H., Discretization of Volterra integral equations of the first kind (II), Numer. math., Vol. 30, 117-136, (1978) · Zbl 0366.65058
[141] Brunner, H., Superconvergence of collocation methods for Volterra integral equations of the first kind, Computing, Vol. 21, 151-157, (1978) · Zbl 0391.65055
[142] Brunner, H., A note on collocation methods for Volterra integral equations of the first kind, Computing, Vol. 23, 179-187, (1979) · Zbl 0402.65067
[143] Brunner, H., On superconvergence in collocation methods for Abel integral equations, (), 117-128
[144] Eggermont, P.P.B., A new analysis of the Euler-, midpoint- and trapezoidal discretization methods for the numerical solution of Abel-type integral equations, () · Zbl 0469.65093
[145] Gladwin, C.J., Methods of high order for the numerical solution of first kind Volterra integral equations, () · Zbl 0321.65063
[146] Gladwin, C.J., Quadrature rule methods for Volterra integral equations of the first kind, Math. comp., Vol. 33, 705-716, (1979) · Zbl 0414.65072
[147] Gladwin, C.J.; Jeltsch, R., Stability of quadrature rule methods for first kind Volterra integral equations, Bit, Vol. 14, 144-151, (1974) · Zbl 0283.65069
[148] Holyhead, P.A.W.; McKee, S., Stability and convergence of multistep methods for linear Volterra integral equations of the first kind, SIAM J. numer. anal., Vol. 13, 269-292, (1976) · Zbl 0324.65059
[149] De Hoog, F.R., Asymptotic errors for finite differences schemes, (), 159-172
[150] De Hoog, F.; Weiss, R., On the solution of Volterra integral equations of the first kind, Numer. math., Vol. 21, 22-32, (1973) · Zbl 0262.65078
[151] De Hoog, F.; Weiss, R., High order methods for Volterra integral equations of the first kind, SIAM J. numer. anal., Vol. 10, 647-664, (1973) · Zbl 0261.65086
[152] Hung, H.-S., A higher order global approximation method for solving an Abel integral equation by quadratic splines, ()
[153] Keech, M.S., A third order, semi-explicit method in the numerical solution of first kind Volterra integral equations, Bit, Vol. 17, 312-320, (1977) · Zbl 0372.65051
[154] Kobayasi, M., On numerical solution of the Volterra integral equations of the first kind by trapezoidal rule, Rep. statist. appl. res. un. Japan. sci. engrs., Vol. 14, 1-14, (1967) · Zbl 0155.20802
[155] Linz, P., Numerical methods for Volterra integral equations of the first kind, Computer J., Vol. 12, 393-397, (1969) · Zbl 0193.13701
[156] Linz, P., Product integration methods for Volterra integral equations of the first kind, Bit, Vol. 11, 413-421, (1971) · Zbl 0227.65065
[157] McKee, S., Best convergence rates of linear multistep methods for Volterra first kind equations, Computing, Vol. 21, 343-358, (1979) · Zbl 0425.65076
[158] Piessens, R.; Verbaeten, P., Numerical solution of the Abel integral equation, Bit, Vol. 13, 451-457, (1973) · Zbl 0266.65081
[159] Smarzewski, R.; Malinowski, H., Numerical solution of a class of Abel integral equations, J. inst. math. appl., Vol. 22, 159-170, (1978) · Zbl 0395.65069
[160] Taylor, P.J., The solution of Volterra integral equations of the first kind using inverted differentiation formulae, Bit, Vol. 16, 416-425, (1976) · Zbl 0366.65056
[161] Ten, M.Y., Block method for the solution of two-dimensional Volterra equations of the first kind, Differential equations, Vol. 15, 794-798, (1979) · Zbl 0433.45015
[162] Weiss, R.; Anderssen, R.S., A product integration method for a class of singular first kind Volterra equations, Numer. math., Vol. 18, 442-456, (1972) · Zbl 0228.65086
[163] Andrade, C.; Franco, N.B.; McKee, S., Convergence of linear multistep methods for Volterra first kind equations with k(t,t) = 0, Computing, Vol. 27, 189-204, (1981) · Zbl 0456.65073
[164] Eggermont, P.P.B., A new analysis of the trapezoidal discretization method for the numerical solution of Abel-type integral equations, J. integral equations, Vol. 3, 317-332, (1981) · Zbl 0469.65093
[165] Wolkenfelt, P.H.M., Reducible quadrature methods for Volterra integral equations of the first kind, Bit, Vol. 21, 232-241, (1981), E. Volterra integro-differential equations · Zbl 0463.65090
[166] Baker, C.T.H.; Makroglou, A.; Short, E., Regions of stability in the numerical treatment of Volterra integro-differential equations, SIAM J. numer. anal., Vol. 16, 890-910, (1979) · Zbl 0428.65066
[167] Baker, C.T.H.; Wilkinson, J.C., Basic stability analysis of Runge-Kutta methods for Volterra integro-differential equations, ()
[168] Brunner, H., On the numerical solution of nonlinear Volterra integro-differential equations, Bit, Vol. 13, 381-390, (1973) · Zbl 0265.65056
[169] Brunner, H.; Lambert, J.D., Stability of numerical methods for Volterra integro-differential equations, Computing, Vol. 12, 75-89, (1974) · Zbl 0282.65088
[170] Feldstein, A.; Sopka, J.R., Numerical methods for nonlinear Volterra integro-differential equations, SIAM J. numer. anal., Vol. 11, 826-846, (1974) · Zbl 0291.65029
[171] Garey, L., Step by step methods for the numerical solution of Volterra integro-differential, (), 319-329
[172] Goldfine, A., Taylor series methods for the solution of Volterra integral and integro-differential equations, Math. comp., Vol. 31, 691-707, (1977) · Zbl 0372.65054
[173] Van Der Houwen, P.J.; Te Riele, H.J.J.; Wolkenfelt, P.H.M., On the stability of multistep formulas for systems of Volterra integro-differential equations, () · Zbl 0597.65096
[174] Jackiewicz, Z., Convergence of multistep methods for Volterra functional differential equations, Numer. math., Vol. 32, 307-332, (1979) · Zbl 0388.65028
[175] Linz, P., Linear multistep methods for Volterra integro-differential equations, J. assoc. comput. Mach., Vol. 16, 295-301, (1969) · Zbl 0183.45002
[176] Makroglou, A., Convergence of a block-by-block method for nonlinear Volterra integro-differential equations, Math. comp., Vol. 35, 783-796, (1980) · Zbl 0472.65096
[177] Matthys, J., A-stable linear multistep methods for Volterra integro-differential equations, Numer. math., Vol. 27, 85-94, (1976) · Zbl 0319.65072
[178] McKee, S., Cyclic multistep methods for solving Volterra integro-differential equations, SIAM J. numer. anal., Vol. 16, 106-114, (1979) · Zbl 0401.65082
[179] Micula, M., Procédés de type Runge-Kutta-fehlberg pour l’approximation de la solution de l’équation intégrodifférentielle de premier ordre de type Volterra, Studia univ. babes-bolyai ser. math. mech., Vol. 18, 61-68, (1973) · Zbl 0278.65125
[180] Mocarsky, W.L., Convergence of step-by-step methods for nonlinear Volterra integro-differential equations, J. inst. math. appl., Vol. 8, 235-239, (1971) · Zbl 0245.65064
[181] Papatheodorou, T.S.; Jesanis, M.E., Collocation methods for Volterra integrodifferential equations with singular kernels, J. comput. appl. math., Vol. 6, 3-8, (1980) · Zbl 0426.65076
[182] Tavernini, L., One-step methods for the numerical solution of Volterra functional differential equations, SIAM J. numer. anal., Vol. 8, 786-795, (1971) · Zbl 0231.65070
[183] Tavernini, L., Linear multistep methods for the numerical solution of Volterra functional differential equations, Applicable anal., Vol. 1, 169-185, (1973) · Zbl 0291.65020
[184] Wolkenfelt, P.H.M., Backward differentiation formulas for Volterra integro-differential equations, (), F. Software · Zbl 0392.65052
[185] Bownds, J.M., A subroutine for solving Volterra integral equations, part I: theory and performance; part II (with applebaum L.): the code and its documentation, (1981), Dept. of Mathematics, University of Arizona Tucson, Preprint
[186] Baker, C.T.H.; Keech, M.S., Methods for two-sided Runge-Kutta approximations to the solution of Volterra integral equations of the second kind, ()
[187] Delves, L.M., Numerical software for integral equations, (), 303-323
[188] Fan, L.S.; Squire, W., Inversion of Abel’s integral equation by a direct method, Comput. phys. comm., Vol. 10, 98-103, (1975)
[189] Miller, G.F., Algorithms for integral equations, (), 139-147
[190] MILLER G. F. : Provision of library programs for the numerical solution of integral equations, in [A6], pp. 247-256.
[191] Neves, K.W., Automatic integration of functional differential equations: an approach, ACM trans. math. software, Vol. 1, 357-368, (1975) · Zbl 0315.65045
[192] (), 193-208
[193] Te Riele, H.J.J., Regularization methods for integral equations of the first kind (in Dutch), (), 147-176
[194] Smarzewski, R.; Malinowski, H., Determination of the solution of an Abel integral equation (algorithm 65), Zastos. mat., Vol. 16, 505-511, (1979) · Zbl 0403.65057
[195] Squire, W., Numerical solution of linear Volterra equation of the first kind, ()
[196] Stoutemyer, D.R., Analytically solving integral equations by using computer algebra, ACM trans. math. software, Vol. 3, 128-146, (1977) · Zbl 0364.65108
[197] Bogen, R.A., Addendum to “analytically solving integral equations by using computer algebra”, ACM trans. math. software, Vol. 5, 234-237, (1979), G. Equations of the first kind with noisy data · Zbl 0406.65059
[198] Anderssen, R.S., Computing with noisy data with an application to Abel’s equation, (), 61-79 · Zbl 0312.65094
[199] Anderssen, R.S., Stable procedures for the inversion of Abel’s equation, J. inst. math. appl., Vol. 17, 329-342, (1976) · Zbl 0328.65065
[200] Anderssen, R.S., Some numerical aspects of improperly posed problems or why regularization works and when not to use it, ()
[201] Anderssen, R.S.; Bloomfield, P., Numerical differentiation procedures for non-exact data, Numer. math., Vol. 22, 157-182, (1974) · Zbl 0264.65014
[202] Cullum, J., Numerical differentiation and regularization, SIAM J. numer. anal., Vol. 8, 254-265, (1971) · Zbl 0224.65005
[203] Kosarev, E.L., The numerical solution of Abel’s integral equation, U.S.S.R. comput. math. and math. phys., Vol. 13, 1591-1596, (1973)
[204] Marti, J.T., On the convergence of an algorithm computing minimumnorm solutions of ill-posed problems, Math. comp., Vol. 34, 521-527, (1980) · Zbl 0439.65036
[205] Minerbo, G.N.; Levy, M.E., Inversion of Abel’s integral equation by means of orthogonal polynomials, SIAM J. numer. anal., Vol. 6, 596-616, (1969) · Zbl 0213.17102
[206] Schmaedeke, W.W., Approximate solutions for Volterra integral equations of the first kind, J. math. anal. appl., Vol. 23, 604-613, (1968) · Zbl 0172.20301
[207] Ugniewski, S., Solving the Abel integral equation by interpolation methods, Zastos, mat., Vol. 16, 91-109, (1977), H. Applications of Volterra equations · Zbl 0379.65054
[208] Anderssen, R.S., Application and numerical solution of Abel-type integral equations, () · Zbl 0444.65084
[209] ANDERSSEN R. S. : On the use of linear functionals for Abel-type integral equations in applications, in [A2], pp. 195-221.
[210] Anderssen, R.S.; De Hoog, F.R.; Weiss, R., On the numerical solution of Brownian motion processes, J. appl. probability, Vol. 10, 409-418, (1973) · Zbl 0261.65089
[211] Jakeman, A.J.; Anderssen, R.S., Abel type integral equations in stereology, I: general discussion, J. microscopy, Vol. 105, 121-133, (1975)
[212] Anderssen, R.S.; Jakeman, A.J., Abel type integral equations in stereology. II: computational methods of solution and the random sphere approximation, J. microscopy, Vol. 105, 135-153, (1975)
[213] Balasubramanian, R.; Norrie, D.H.; De Vries, G., The application of the least squares finite element method to Abel’s integral equation, Internat. J. numer. methods engrg., Vol. 14, 201-209, (1979) · Zbl 0394.65048
[214] Bock, T.L., Numerical inversion of the Abel integral function, using least-squares splines, Ann. physik, Vol. 34, 7, 335-340, (1977)
[215] Brauer, F., On a nonlinear integral equation for population growth problems, SIAM J. math. anal., Vol. 6, 312-317, (1975) · Zbl 0276.92023
[216] Brauer, F., Constant rate harvesting of populations governed by Volterra integral equations, J. math. anal. appl., Vol. 56, 18-27, (1976) · Zbl 0332.92008
[217] Chamayou, J.M.F., Volterra’s functional integral equations of the statistical theory of damage, J. computational phys., Vol. 13, 70-93, (1973) · Zbl 0268.45007
[218] Chamayou, J.M.F.; El Tom, M.E.A., On the approximate solution of the delay integral equation of the statistical theory of radiation damage, Comput. phys. comm., Vol. 9, 131-140, (1975) · Zbl 0384.65063
[219] Chester, C.R., Techniques in partial differential equations, (), 398-418 · Zbl 0209.12002
[220] Cooke, K.L.; Yorke, J.A., Some equations modeling growth process nd epidemics, Math. biosci., Vol. 16, 75-101, (1973) · Zbl 0251.92011
[221] DIEKMANN O. : Integral equations and population dynamics, in [A13], pp. 115-149.
[222] Durbin, J., Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the komogorov-Smirnov-test, J. appl. probability, Vol. 8, 431-453, (1971) · Zbl 0225.60037
[223] Eggermont, P.P.B., Special discretization methods for the integral equation of image reconstruction and for Abel-type integral equations, () · Zbl 0469.65093
[224] Fedotkin, I.M.; Aizen, A.M.; Goloshchuk, I.A., Application of integral equations to heat conduction problems in which the heat coefficient varies, J. engrg. phys., Vol. 28, 392-395, (1975)
[225] Fleurier, C.; Chapelle, J., Inversion of Abel’s integral equation — application to plasma spectroscopy, Comput. phys. comm., Vol. 7, 200-206, (1974)
[226] Ghez, R.; Lew, J.S., Interface kinetics and crystal growth under conditions of constant cooling rate: I. constant diffusion coefficient, J. crystal growth, Vol. 20, 273-282, (1973)
[227] GOLDMAN A. and VISSCHER W. : Applications of integral equations in particle-size statistics, in [A7], pp. 169-182. · Zbl 0434.45006
[228] Hendry, W.L., A Volterra integral equation of the first kind, J. math. anal. appl., Vol. 54, 266-278, (1976) · Zbl 0346.45004
[229] JAKEMAN A. J. and YOUNG P. : Systems identification and estimation for convolution integral equations, in [A2], pp. 235-255. · Zbl 0447.45001
[230] Kasperczuk, A., Numerical solution to Abel integral equation in optical diagnostics of axisymmetrical objects, J. techn. phys., Vol. 19, 137-150, (1978) · Zbl 0379.76001
[231] Keller, J.B.; Olmstead, W.E., Temperature of a nonlinearly radiating semi-infinite rod, Quart. appl. math., Vol. 29, 559-566, (1972) · Zbl 0245.35040
[232] Kershaw, D., The determination of the density distribution of a gas flowing in a pipe from Mean density measurements, J. inst. math. appl., Vol. 6, 111-114, (1970)
[233] Knirk, D.L., Accurate and efficient quadrature for Volterra integral equations, J. computational phys., Vol. 21, 371-399, (1976) · Zbl 0337.65068
[234] Knopp, T.J., Transcoronary intravascular transport functions obtained via a stable deconvolution technique, Ann. biomedical eng., Vol. 4, 44-59, (1976)
[235] Kosarev, E.L., Applications of integral equations of the first kind in experimental physics, Comput. phys. comm., vol. 20, 69-75, (1980)
[236] Lee, A.C.H.; Padgett, W.J., A random nonlinear integral equation in population growth problems, J. integral equations, Vol. 2, 1-9, (1980) · Zbl 0425.60056
[237] Lonseth, A.T., Sources and applications of integral equations, SIAM review, Vol. 19, 241-278, (1977) · Zbl 0363.45001
[238] Mazur, J., Numerical solution of integral equations of the first kind applied to slit correction in small-angle x-ray scattering, J. res. nat. bur. standards sect. B, Vol. 75B, 173-187, (1971) · Zbl 0248.65077
[239] McKee, S., The analysis of a variable step, variable coefficient linear multistep method for solving a singular integro-differential equation arising from the diffusion of discrete particles in a turbulent fluid, J. inst. math. appl., Vol. 23, 373-388, (1979) · Zbl 0409.45010
[240] De Mey, G., An integral equation method for the numerical calculation of ion drift and diffusion in evaporated dielectrics, Computing, Vol. 17, 169-176, (1976) · Zbl 0336.65055
[241] Nicholson, R.S., Some examples of the numerical solution of nonlinear integral equations, Anal. chem., Vol. 37, 667-671, (1965)
[242] Olmstead, W.E., A nonlinear integral equation associated with gas absorption in a liquid, Z. angew. math. phys., Vol. 28, 513-523, (1977) · Zbl 0363.45004
[243] Piessens, R., Calculation of radial distribution of emitters in a cylindrical source, Comput. phys. comm., Vol. 5, 294-298, (1973)
[244] Takeda, T., Numerical method for solution of the integral equation of the first kind — application to analysis of plasma density profile, J. computational phys., Vol. 21, 305-318, (1976) · Zbl 0359.65103
[245] Anderssen, R.S.; de Hoog, F.R., Application and numerical solution of Abel-type integral equations, () · Zbl 0729.65111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.