×

Necessary conditions for local solvability of homogeneous left invariant differential operators on nilpotent Lie groups. (English) Zbl 0486.22006


MSC:

22E25 Nilpotent and solvable Lie groups
22E27 Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.)
35G05 Linear higher-order PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Birkhoff, G., Representability of Lie algebras and Lie groups by matrices.Ann. of Math., 38 (1937), 526–532. · Zbl 0016.24402
[2] Corwin, L., A representation-theoretic criterion for local solvability of left-invariant differential operators on nilpotent Lie groups.Trans. Amer. Math. Soc., 264 (1981), 113–120. · Zbl 0471.22009
[3] Corwin, L. &Greenleaf, F. P., Character formulas and spectra of compact nilmanifolds.J. Functional Analysis, 21 (1976), 123–154. · Zbl 0319.22011
[4] –, Fourier transforms of smooth functions on certain nilpotent Lie groups.J. Functional Analysis, 37 (1980), 203–217. · Zbl 0456.43006
[5] –, Rationally varying polarizing subspaces in nilpotent Lie algebras.Proc. Amer. Math. Soc., 81 (1981), 27–32. · Zbl 0477.17001
[6] Corwin, L., Greenleaf, F. P. &Penney, R., A generals character formula for the distribution kernels of primary projections inL 2 of a nilmanifold.Math. Ann., 225 (1977), 21–37. · Zbl 0329.46048
[7] Duflo, M. &Wigner, D., Convexité pour des operateurs differentiels invariants sur les groupes de Lie.Math. Z., 167 (1979), 61–80. · Zbl 0387.43007
[8] Folland, G. &Stein, E. M., Estimates for the b complex and analysis on the Heisenberg group.Comm. Pure Appl. Math., 27 (1974), 429–522. · Zbl 0293.35012
[9] Geller, D., Fourier analysis on the Heisenberg group II: Local solvability and homogeneous distributions,Comm. Partial Diff Eq., 5 (1980), 475–560. · Zbl 0488.22020
[10] Greiner P., Kohn, J. J. &Stein E. M., Necessary and sufficient conditions for solvability of the Lewy equation.Proc. Nat. Acad. Sci. U.S.A., 72, (1975), 3287–3289. · Zbl 0308.35017
[11] Grušin, V. V., On a class of hypoelliptic operators.Mat. Sb., 83 (125) (1970), 456–473(=Math. USSR-Sb., 12 (1970), 458–476).
[12] – On a class of elliptic pseudodifferential operators degenerate on a submanifold.Mat. Sb., 84 (126): 2 (1971), 163–195. (= Math. USSR-Sb., 13: 2 (1971), 155–185).
[13] Helffer, B. & Nourrigat, J., Théorèmes d’indice pour les operateurs à coefficients polynomiaux. Preprint. · Zbl 0569.35015
[14] –, Characterisation des operateurs hypoelliptiques homogènes invariants a gauche sur un groupe de Lie nilpotent gradué.Comm. Partial Differential Equations, 4 (8) (1979), 899–958. · Zbl 0423.35040
[15] Hörmander, L.,Linear Partial Differential Operators. Springer-Verlag, Berlin, 1963. · Zbl 0108.09301
[16] Kannai, Y., An unsolvable hypoelliptic differential operator.Israel J. Math., 9 (3), (1971), 306–315. · Zbl 0211.40601
[17] Kato, T.,Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1966. · Zbl 0148.12601
[18] Kirillov, A. A., Unitary representations of nilpotent Lie groups.Uspehi Mat. Nauk., 17 (1962), 57–110. · Zbl 0106.25001
[19] Knapp, A. &Stein, E. M., Interwining operators operators for semisimple Lie groups.Ann. of Math., 93 (1971), 489–578. · Zbl 0257.22015
[20] Lions, G., Hypoellipticité et resolubilité d’operateurs differentiels sur les groupes nilpotents de rang 2.C. R. Acad. Sci. Paris, 290 (1980), 271–274.
[21] Pukanszky, L.,Leçons sur les representations des groupes. Dunod, Paris, 1967. · Zbl 0152.01201
[22] – On the characters and the Plancherel formula of nilpotent groups.J. Functional Analysis, 1 (1967), 255–280. · Zbl 0165.48603
[23] Rockland, C., Hypoellipticity on the Heisenberg group-representation-theoretic criteria.Trans. Amer. Math. Soc., 240 (1978), 1–52. · Zbl 0326.22007
[24] Rothschild, L. P., Local solvability of left-invariant differential operators on the Heisenberg group.Proc. Amer. Math. Soc., 74, (1979), 383–388. · Zbl 0413.58021
[25] Rothschild, L. P. Local solvability of second order differential operators on nilpotent Lie groups.Ark. Math. To appear. · Zbl 0485.35018
[26] Rothschild, L. P. &Stein, E. M., Hypoelliptic differential operators and nilpotent groupsActa. Math., 137 (1976), 247–320. · Zbl 0346.35030
[27] Vergne, M., Construction de sous-algèbres subordonées à un element du dual d’une algèbre de Lie résoluble.C. R. Acad. Sci. Paris, Sér. A., 270 (1970), 173–175, 704–707. · Zbl 0209.06701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.