The Cauchy problem for coupled Yang-Mills and scalar fields in the temporal gauge. (English) Zbl 0486.35048


35L60 First-order nonlinear hyperbolic equations
35A07 Local existence and uniqueness theorems (PDE) (MSC2000)
81T08 Constructive quantum field theory
35Q99 Partial differential equations of mathematical physics and other areas of application
35E15 Initial value problems for PDEs and systems of PDEs with constant coefficients
35L45 Initial value problems for first-order hyperbolic systems


Zbl 0486.35049
Full Text: DOI


[1] Adams, R. A.: Sobolev spaces, New York: Academic Press, 1975 · Zbl 0314.46030
[2] Christodoulou, D.: J. Math. Pure Appl.60, 99-130 (1981)
[3] Ginibre, J., Velo, G.: Phys. Lett. B,99, 405-410 (1981)
[4] Glassey, R. T., Strauss, W. A.: Commun. Math. Phys.65, 1-13 (1979) · Zbl 0402.35069
[5] Glassey, R. T., Strauss, W. A.: Commun. Math. Phys.67, 51-67 (1979) · Zbl 0425.35085
[6] Glassey, R. T., Strauss, W. A.: Some global solutions of the Yang Mills equations in Minkowski space, Commun. Math. Phys.81, 171-187 (1981) · Zbl 0496.35055
[7] Moncrief, V.: J. Math. Phys.21, 2291-2296 (1980).
[8] Nirenberg, L.: Ann Scuol. Norm. Sup. Pisa13, 116-162 (1959)
[9] Parenti, C., Strocchi, F., Velo, G.: Ann. Scuol. Norm. Sup. Pisa, Serie IV,3, 443-500 (1976)
[10] Segal, I. E.: Ann. Math.78, 339-364 (1963) · Zbl 0204.16004
[11] Segal, I. E.: J. Funct. Anal.33, 175-194 (1979) · Zbl 0416.58027
[12] Eardley, D., Moncrief, V.: The global existence of Yang-Mills-Higgs field in 4 dimensional Minkowski space. I. Local existence and smoothness properties, II. Completion of the proof. Commun. Math. Phys. (to appear). · Zbl 0496.35061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.