×

zbMATH — the first resource for mathematics

A restricted form of the therem of Maurey-Pisier for the cotype in p- Banach spaces. (English) Zbl 0486.46016

MSC:
46B20 Geometry and structure of normed linear spaces
46A16 Not locally convex spaces (metrizable topological linear spaces, locally bounded spaces, quasi-Banach spaces, etc.)
46B25 Classical Banach spaces in the general theory
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] D. Dacunha-Castelle and J.L. Krivine , Applications des ultraproduits à l’étude des spaces de Banach . Studia Math. , t. 41 , 1972 , p. 315 - 334 . Article | MR 305035 | Zbl 0275.46023 · Zbl 0275.46023 · eudml:217617
[2] N.J. Kalton , The convexity type of quasi-Banach spaces . Unpublished paper. · Zbl 1059.46004
[3] J.L. Krivine , Sous-espaces de dimension finie des espaces de Banach rèticulés . Ann. Math. , t. 104 , 1976 , p. 1 - 29 . MR 407568 | Zbl 0329.46008 · Zbl 0329.46008 · doi:10.2307/1971054
[4] B. Maurey , Type et cotype dans les espaces munis de structures locales inconditionnelles . Sem. École Polytechnique , 1973 - 1974 , Exp. XXIV et XXV. Palaiseau . Numdam | MR 399796 | Zbl 0321.46013 · Zbl 0321.46013 · numdam:SAF_1973-1974____A25_0 · eudml:109107
[5] B. Maurey , G. Pisier , Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach . Studia Math. , t. 58 , 1976 . p. 45 - 90 . Article | MR 443015 | Zbl 0344.47014 · Zbl 0344.47014 · eudml:218082
[6] V.D. Milman , M. Sharir , A new proof of the Maurey-Pisier theorem . Israel J. of Math. , t. 33 - 1 , 1979 , 74 - 87 . MR 571585 | Zbl 0418.46010 · Zbl 0418.46010 · doi:10.1007/BF02760534
[7] H.P. Rosenthal , On a theorem of J. L. Krivine concerning block finite representability of lP in general Banach Spaces . J. of Funct. Anal. , t. 28 ( 2 ), 1978 , p. 197 - 225 . MR 493384 | Zbl 0387.46016 · Zbl 0387.46016 · doi:10.1016/0022-1236(78)90086-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.