Potra, Florian Alexandru An application of the induction method of V. Ptak to the study of regula falsi. (English) Zbl 0486.65038 Apl. Mat. 26, 111-120 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 14 Documents MSC: 65H10 Numerical computation of solutions to systems of equations Keywords:induction method; regula falsi; p-dimensional rate of convergence; secant method; iterative procedure Citations:Zbl 0323.46005; Zbl 0378.65031 × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] M. Balazs G. Goldner: On existence of divided differences in linear spaces. Revue d’analyse numérique et de la théorie de l’approximation, 2 (1973), 5-9. · Zbl 0356.65042 [2] M. Fréchet: La notion de differentielle dans l’analyse générale. Ann. Ec. Norm. Sup, 42, (1925) 293-323. · JFM 51.0312.03 [3] T. Popoviciu: Introduction à Ia théorie des differences divisées. Bull. Math. Soc. Roum. Sci., 42 (1941), 65-78. · JFM 66.0389.01 [4] V. Pták: The rate of convergence of Newton’s process. Numer. Math., 25 (1976), 279 - 285. · Zbl 0304.65037 · doi:10.1007/BF01399416 [5] V. Pták: Nondiscrete mathematical induction and iterative existence proofs. Linear algebra and its applications 13 (1976), 233 - 238. · Zbl 0323.46005 [6] V. Pták: What should be a rate of convergence?. R. A.I. R. O. , Analyse Numérique 11,3 (1977), 279-286. · Zbl 0378.65031 [7] J. Schmidt: Eine Übertragung der Regula Falsi auf Gleichungen in Banachraum. I, II, Z. Angew. Math. Mech., 43 (1963), p. 1-8, 97-11.0. · Zbl 0115.34002 · doi:10.1002/zamm.19630430102 [8] J. Schröder: Nichtlineare Majoranten beim Verfahren der schrittweissen Näherung. Arch. Math. (Basel) 7 (1956), 471-484. · Zbl 0080.10605 · doi:10.1007/BF01899031 [9] А. С. Сергеев: О метоге хорд. Сибир. Матем. Ж. 2 (1961), 282-289. · Zbl 1160.68305 · doi:10.1147/rd.53.0183 [10] С. Улъм: Об обобщенных разделенных разностях. I, II И АН ЭССР, Физика, математика, 16 (1967) p. 13-26, 146-156. · Zbl 1103.35360 · doi:10.1103/PhysRevLett.19.1095 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.