Potra, F. A. The rate of convergence of a modified Newton’s process. (English) Zbl 0486.65039 Apl. Mat. 26, 13-17 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 7 Documents MSC: 65J15 Numerical solutions to equations with nonlinear operators 47J25 Iterative procedures involving nonlinear operators Keywords:method of nondiscrete mathematical induction; rate of convergence; Newton’s process; sharp error bounds Citations:Zbl 0304.65037 × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] M. Frechet: La notion de différentielle dans l’analyse générale. Ann. Ec. Norm. Sup., 42, (1925), 293-323. · JFM 51.0312.03 [2] Л. В. Канторович: Фунциональный анализ и прикладная математика. Y. M. H., 3, 89-185 (1948). · Zbl 1154.94303 [3] Л. В. Канторович: О методе Ньютона. Труды Матем. Института Стеклова, 28, 104-144 (1949). · Zbl 1152.51302 [4] Л. В. Канторович Г. П. Акилов: Фунциональный анализ. Издание второе переработанное, Москва (1977). · Zbl 1225.01071 · doi:10.1126/science.196.4286.144 [5] V. Pták: Nondiscrete mathematical induction and iterative existence proofs. Linear algebra and its applications 13 (1976), 223 - 238. · Zbl 0323.46005 · doi:10.1016/0024-3795(76)90098-7 [6] V. Pták: The rate of convergence of Newton’s process. Num. Math., 25 (I976), 279-285., · Zbl 0304.65037 · doi:10.1007/BF01399416 [7] L. Schwartz: Analyse Mathématique. Herman, Paris, 1967. · Zbl 0171.01301 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.