×

zbMATH — the first resource for mathematics

On \(c^ 0\) beam elements with shear and their corresponding penalty function formulation. (English) Zbl 0486.73070

MSC:
74S05 Finite element methods applied to problems in solid mechanics
49M30 Other numerical methods in calculus of variations (MSC2010)
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
34E10 Perturbations, asymptotics of solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arnold, D.N., Discretization by finite elements of a model parameter dependent problem, Numer. math., 37, 405-421, (1981) · Zbl 0446.73066
[2] Babuska, I.; Aziz, A.K., Survey lectures on the FEM, (), 5-359
[3] Bercovier, M., Perturbation of mixed variational problems, RAIRO numer. anal., 12, 211-236, (1978) · Zbl 0428.65059
[4] Bercovier, M.; Engleman, M., A finite element for the numerical solution of viscous incompressible flows, J. com. phys., 30, 201-281, (1979)
[5] Bercovier, M., Approximation of Bingham’s variational inequalities by a penalty function for the incompressibility constraint, Numer. funct. anal. optimiz., 2, 361-373, (1980) · Zbl 0453.76028
[6] M. Bercovier, Y. Hasbani, Y. Gilon and K. J. Bäthe, On a finite element procedure for non linear incompressible elasticity. In Symposium on Hybrid and Mixed Finite Elements (Edited by S. N. Atluri), to appear. · Zbl 0472.73080
[7] Bourgat, J.F.; Dumay, J.M.; Glowinski, R., Large displacement calculations of flexible pipe lines by finite element and non linear programming methods, (), 109-175 · Zbl 0439.73072
[8] Brezzi, F., On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers, Rairo r-2, 8, 129-151, (1974) · Zbl 0338.90047
[9] Ciarlet, Ph.G.; Destuynder, Ph., Justification of the 2 dimensional linear plate model, J. Mécanique, 18, 315-344, (1979), Part I · Zbl 0415.73072
[10] Destuynder, Ph., Ph.D. dissertation, (1980), Paris
[11] Duvaut, G.; Lions, J.L., LES inequations en mecanique et en physique, (1972), Dunod Paris · Zbl 0298.73001
[12] Fried, I., Shear in c0 and c1 bending finite elements, Int. J. solids structures, 9, 449-460, (1973)
[13] Hobbs, R.E., A beam bending problem with a free boundary, Comput. struct., 10, 915-920, (1979) · Zbl 0416.73042
[14] Johnson, C.; Pitkaranta, J., Analysis of some mixed finite element methods related to reduced integration, () · Zbl 0482.65058
[15] Malkus, D.S.; Hughes, T.J.R., Mixed finite element methods—reduced and selective integration techniques: a unification of concepts, Comp. methods appl. mech. engng, 15, 63-81, (1978) · Zbl 0381.73075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.