×

zbMATH — the first resource for mathematics

The characterization of strictly parabolic spaces. (English) Zbl 0487.32005

MSC:
32C15 Complex spaces
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] E. Bedford and B.A. Taylor : The Dirichlet problem for a complex Monge-Ampère equation . Bull. Amer. Math. Soc. 82 (1976) 102-104. · Zbl 0322.31008 · doi:10.1090/S0002-9904-1976-13977-8 · eudml:142425
[2] E. Bedford and B.A. Taylor : The Dirichlet problem for a complex Monge-Ampère equation . Proc. Symp. Pure Math. 30 (1977) 109-113. · Zbl 0356.31007
[3] E. Bedford and M. Kalka : Foliations and complex Monge-Ampère equations . Comm. Pure Appl. Math. 30 (1977) 510-538. · Zbl 0351.35063 · doi:10.1002/cpa.3160300503
[4] E. Bedford and D. Burns : Holomorphic mapping of annuli in C n and the associated extremal function . Ann. Scuola Norm. Sup. Pisa 6 (1979) 381-414. · Zbl 0422.32021 · numdam:ASNSP_1979_4_6_3_381_0 · eudml:83814
[5] S.S. Chern , H. Levine and L. Nirenberg : Intrinsic norms on a complex manifold. Global Analysis (Papers in Honor of K. Kodaira) , University of Tokyo Press, Tokyo, 1969, 119-139. · Zbl 0202.11603
[6] H. Federer : Geometric measure theory . Grundl. d. Math. Wiss. 153, Springer-Verlag, 1969, pp. 676. · Zbl 0176.00801
[7] K. Fritsche : q-konvexe Restmengen in kompakten komplexen Mannigfaltigkeiten , Math. Ann. 221 (1976) 251-273. · Zbl 0327.32007 · doi:10.1007/BF01596392 · eudml:162846
[8] R.E. Greene and H. Wu : Analysis in non-compact Kähler manifolds . Proc. Symp. Pure Math. 30 (1977) 69-100. · Zbl 0383.32005
[9] Ph. Griffiths and J. King : Nevanlinna theory and holomorphic mappings between algebraic varieties . Acta Math. 130 (1973) 145-220. · Zbl 0258.32009 · doi:10.1007/BF02392265
[10] S. Kobayashi and K. Nomizu : Foundations of differential geometry . Interscience Tract, Pure Appl. Math. 15, John Wiley and Sons, New York - London- Sydney, (Vol. 1) 1963, (Vol. 2) 1969. · Zbl 0175.48504
[11] B. Malgrange : Sur les fonctions differentiables et les ensembles analytiques . Bull. Soc. Math. France 91 (1963) 113-127. · Zbl 0113.06302 · doi:10.24033/bsmf.1592 · numdam:BSMF_1963__91__113_0 · eudml:87030
[12] B. Malgrange : Ideals of differentiable functions . Tata Institute of Fundamental Research, Studies in Math. 3 (1966) pp. 106. · Zbl 0177.17902
[13] J. Morrow and K. Kodaira : Complex Manifolds . Holt, Rinehart and Winston, New York, 1971, pp. 192. · Zbl 0325.32001
[14] Y.T. Siu and S.T. Yau : Complete Kähler manifolds with non-positive curvature of faster than quadratic decay . Ann. of Math. 105 (1977) 255-264. · Zbl 0358.32006 · doi:10.2307/1970998
[15] Y.T. Siu and S.T. Yau : Compact Kähler manifolds of positive bisectional curvature , preprint, 33 pp. of ms. · Zbl 0442.53056 · doi:10.1007/BF01390043 · eudml:142736
[16] W. Stoll : Value distribution on parabolic spaces , Lecture Notes in Mathematics No. 600, Springer-Verlag, Berlin - Heidelberg - New York, 1977, pp. 216. · Zbl 0367.32001
[17] W. Stoll : Variétés strictement paraboliques . C. R. Acad. Sci. Paris (Série A) 285 (1977) 757-759. · Zbl 0418.32005
[18] W. Stoll : The characterization of strictly parabolic manifolds . Ann. Scuola Norm. Sup. Pisa 7 (1980) 87-154. · Zbl 0438.32005 · numdam:ASNSP_1980_4_7_1_87_0 · eudml:83834
[19] C. Tung : The first main theorem of value distribution on complex spaces . Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8) 15 (1979) no. 4, 91-263. · Zbl 0496.32018
[20] C. Tung : Pseudoconvexity and value distribution for Schubert zeroes . Michigan Math. J. 26 (1979) 243-256. · Zbl 0441.32010 · doi:10.1307/mmj/1029002217
[21] J.H.C. Whitehead : Convex regions in the geometry of paths , Quart. J. Math. 3 (1932) 33-92, 226-227. · Zbl 0004.13102 · doi:10.1093/qmath/os-3.1.33
[22] H. Whitney : Complex Analytic Varieties . Addison-Wesley Publishing Co., Reading, Massachusetts, 1972, pp. 339. · Zbl 0265.32008
[23] P.M. Wong : Defect relations for meromorphic maps on parabolic manifolds . Preprint, 79 pp. of ms.
[24] S.T. Yau : Cruvature of a compact Kähler manifold and the complex Monge-Ampère equation I. Comm . Pure Appl. Math. 31 (1978) 340-412. · Zbl 0369.53059 · doi:10.1002/cpa.3160310304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.