Blumenthal, Robert A.; Hebda, James J. De Rham decomposition theorems for foliated manifolds. (English) Zbl 0487.57010 Ann. Inst. Fourier 33, No. 2, 183-198 (1983). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 27 Documents MSC: 57R30 Foliations in differential topology; geometric theory 53C12 Foliations (differential geometric aspects) Keywords:totally geodesic foliation with integrable normal bundle; product foliations; decomposition theorem for Riemannian foliations PDF BibTeX XML Cite \textit{R. A. Blumenthal} and \textit{J. J. Hebda}, Ann. Inst. Fourier 33, No. 2, 183--198 (1983; Zbl 0487.57010) Full Text: DOI Numdam EuDML OpenURL References: [1] R. A. BLUMENTHAL, Transversely homogeneous foliations, Annales Inst. Fourier, 29 (1979), 143-158. · Zbl 0405.57016 [2] R. A. BLUMENTHAL, Riemannian homogeneous foliations without holonomy, Nagoya Math. J., 83 (1981), 197-201. · Zbl 0427.57008 [3] R. A. BLUMENTHAL, Riemannian foliations with parallel curvature, Nagoya Math. J. (to appear). · Zbl 0508.57020 [4] R. BOTT, Lectures on characteristic classes and foliations (notes by L. conlon), Lecture Notes in Math., no. 279, Springer-Verlag, New York, 1972, 1-80. · Zbl 0241.57010 [5] Y. CARRIERE and E. GHYS, Feuilletages totalement géodésiques, An. Acad. Brasil, Ciênc., 53 (1981), 427-432. · Zbl 0486.57013 [6] A. HAEFLIGER, Variétés feuilletées, Ann. Scuola Norm. Pisa, 16 (1962), 367-397. · Zbl 0122.40702 [7] R. HERMANN, On the differential geometry of foliations, Annals of Math., 72 (1960), 445-457. · Zbl 0196.54204 [8] R. HERMANN, A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle, Proc. Amer. Math. Soc., 11 (1960), 236-242. · Zbl 0112.13701 [9] D. JOHNSON and L. WHITT, Totally geodesic foliations on 3-manifolds, Proc. Amer. Math. Soc., 76 (1979), 355-357. · Zbl 0388.57015 [10] D. JOHNSON and L. WHITT, Totally geodesic foliations, Journal of Diff. Geom., 15 (1980), 225-235. · Zbl 0444.57017 [11] S. KOBAYASHI and K. NOMIZU, Foundations of differential geometry, vol. I, Interscience Tracts in Pure and Appl. Math., 15, Interscience, New York, 1963. · Zbl 0119.37502 [12] C. LAZAROV and J. PASTERNAK, Secondary characteristic classes for Riemannian foliations, Journal of Diff. Geom., 11 (1976), 365-385. · Zbl 0356.57007 [13] P. MOLINO, Etude des feuilletages transversalement complets et applications, Ann. Scient. Ec. Norm. Sup., 10 (1977), 289-307. · Zbl 0368.57007 [14] J. F. PLANTE, Foliations with measure preserving holonomy, Annals of Math., 102 (1975), 327-361. · Zbl 0314.57018 [15] J. F. PLANTE, Measure preserving pseudogroups and a theorem of sacksteder, Annales Inst. Fourier, 25, 1 (1975), 237-249. · Zbl 0299.58007 [16] B. REINHART, Foliated manifolds with bundle-like metrics, Annals of Math., 69 (1959), 119-132. · Zbl 0122.16604 [17] G. DE RHAM, Sur la réductibilité d’un espace de Riemann, Comm. Math. Helv., 26 (1952), 328-344. · Zbl 0048.15701 [18] R. SACKSTEDER, Foliations and pseudogroups, Amer. J. of Math., 87 (1965), 79-102. · Zbl 0136.20903 [19] D. TISCHLER, On fibering certain foliated manifolds over S1, Topology, 9 (1970), 153-154. · Zbl 0177.52103 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.