×

Existence and approximation results for nonlinear mixed problems: Application to incompressible finite elasticity. (English) Zbl 0487.76008


MSC:

76M99 Basic methods in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Adams, R.: Sobolev spaces. New York Academic Press 1975 · Zbl 0314.46030
[2] Antman, S.S.: Ordinary Differential Equations of Non-Linear Elasticity Arch. Rational Mech. Anal.61, 307-393 (1976) · Zbl 0354.73046
[3] Babuska, I., Aziz, A.K.: Survey Lectures on the Mathematical Foundations of the Finite Element Method. The Mathematical Foundations of the Finite Element Method with applications to Partial Differential Equations. A.K. Aziz, Ed.) pp. 3-359, New York: Academic Press
[4] Ball, J.M.: Convexity Conditions and Existence Theorems in Non-Linear Elasticity. Arch. Rational Mech. Anal.63, 337-403 (1977) · Zbl 0368.73040
[5] Brezzi, F.: On the Existence, Uniqueness and Approximation of Saddle-Point Problems arising from Lagrange Multipliers, RAIRO, S?rie Rouge, Anal. Num?r. R2, 129-151 (1974) · Zbl 0338.90047
[6] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland 1978 · Zbl 0383.65058
[7] Ciarlet, P.G., Raviart, P.A.: General Lagrange and Hermite Interpolation in ? n with applications to the Finite Element Method. Arch. Rational Mech. Anal.46, 177-199 (1972) · Zbl 0243.41004
[8] Clarke, F.: A New approach to Lagrange Multipliers. Math. Operations Res. 165-174 (1976) · Zbl 0404.90100
[9] Crandall, M.C., Rabinowitz, P.H.: Bifurcation from a simple eigenvalue. J. Functional Analysis.8, 321-340 (1971) · Zbl 0219.46015
[10] Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier Stokes Equations. Lecture Notes in Mathematics 749, Berlin Heidelberg New York: Springer-Verlag 1980 · Zbl 0413.65081
[11] Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Lecture Notes. Tata Institute Bombay 1980 · Zbl 0456.65035
[12] Fortin, M.: An Analysis of the convergence of mixed finite element methods. Rairo S?rie Rouge, Anal. Num?r.11, 341-354 (1977) · Zbl 0373.65055
[13] Ladyzenskaya, O.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach 1973
[14] Le Tallec, P.: Numerical Analysis of Equilibrium Problems in Incompressible Nonlinear Elasticity. Ph. D. Thesis. The University of Texas at Austin 1980
[15] Le Tallec, P.: Compatibility Condition and Existence Results in Discrete Finite Incompressible Elasticity. Comput. Methods Appl. Mech. Engrg.27, 239-265 (1981) · Zbl 0524.73042
[16] Le Tallec, P.: Les probl?mes d’?quilibre d’un corps hyper?lastique incompressible en grandes d?formations. Th?se d’Etat. Universit? de Paris VI. 1981
[17] Le Tallec, P., Oden, J.T.: On the existence of Hydrostatic pressure in regular finite deformations of incompressible hyperelastic solids. Proc. of Conference on Non-Linear Partial Differential Equations in Engineering and Applied Sciences. Kingston 1979
[18] Le Tallec, P., Oden, J.T.: Existence and characterization of hydrostatic pressure in finite deformations of incompressible elastic bodies. J. Elasticity,11, no 4 (1981)
[19] Scheurer, B.: Existence et approximation de points-selles pour certains probl?mes non lin?aires. Rairo S?rie Rouge. Anal. Num?r.11, 369-400 (1977) · Zbl 0371.65025
[20] Temam, R.: Navier Stokes Equations, Amsterdam: North-Holland (1978) · Zbl 0428.35065
[21] Truesdell, C.: Continuum Mechanics I: The Mechanical Foundations of Elasticity and Fluid Dynamics. International Science Review Series. Gordon and Breach 1966 · Zbl 0188.58803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.