×

Local solvability and homogeneous distributions on the Heisenberg group. (English) Zbl 0488.22020


MSC:

22E25 Nilpotent and solvable Lie groups
47F05 General theory of partial differential operators
35A07 Local existence and uniqueness theorems (PDE) (MSC2000)
35B65 Smoothness and regularity of solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Geller D., Schwartz Space, to appear, J. Func. Anal. (1964)
[2] Folland G. B., Arkiv. f. Mat., 13 pp 161– (1975) · Zbl 0312.35026 · doi:10.1007/BF02386204
[3] Folland G. B., Comm. pure appl. math. 27 pp 429– (1974) · Zbl 0293.35012 · doi:10.1002/cpa.3160270403
[4] Geller D., Proc. Natl. Acad. Sci. USA 74 (4) pp 1328– (1977) · Zbl 0351.43012 · doi:10.1073/pnas.74.4.1328
[5] Geller D., Proc. Symp. Pure Math. 35
[6] Greiner P. C., Proc. Natl. Acad. Sci. USA 72 (9) pp 3287– (1975) · Zbl 0308.35017 · doi:10.1073/pnas.72.9.3287
[7] Grusin V. V., Mat. Sbornik 83 pp 456– (1970)
[8] Lewy H., Ann. Math. 66 pp 155– (1957) · Zbl 0078.08104 · doi:10.2307/1970121
[9] Miller K., to appear
[10] Tartakoff. D., Proc, Natl. Acad. Sci. USA 75 (7) pp 3027– (1978) · Zbl 0384.35020 · doi:10.1073/pnas.75.7.3027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.