Elencwajg, Georges; Forster, O. Vector bundles on manifolds without divisors and a theorem on deformations. (English) Zbl 0488.32012 Ann. Inst. Fourier 32, No. 4, 25-51 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 16 Documents MSC: 32L05 Holomorphic bundles and generalizations 32C35 Analytic sheaves and cohomology groups 32G99 Deformations of analytic structures 32J99 Compact analytic spaces Keywords:manifolds without divisors; holomorphic vector bundles; deformation of bundles; non-algebraic compact manifold × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] [1] , Vector bundles on elliptic curves, Proc. London Math. Soc., 7 (1957), 414-452. · Zbl 0084.17305 [2] [2] , Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc., 85 (1957), 181-207. · Zbl 0078.16002 [3] [3] and , Classification and embeddings of surfaces, In : Algebraic Geometry, Arcata 1974, AMS Proc. Symp. Pure Math., 29 (1975), 329-420. · Zbl 0326.14009 [4] [4] , Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné, Ann. Inst. Fourier, 16 (1966), 1-95. · Zbl 0146.31103 [5] [5] , Fibrés holomorphes sur un tore complexe, Nagoya Math. J., 14 (1959), 1-24. · Zbl 0095.36702 [6] [6] , Abelian varieties, Oxford Univ., Press 1970. · Zbl 0223.14022 [7] [7] , Vector bundles on abelian surfaces, Invent. Math., 13 (1974), 247-260. · Zbl 0216.05903 [8] [8] , Sur les modules projectifs, Séminaire Dubreil-Pisot 1960/1961, Exp. 2. · Zbl 0132.41301 [9] [9] , Variétés Kählériennes. Paris, 1971. · Zbl 0205.51701 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.