Berk, H. L.; Roberts, K. V. New Stokes’ line in WKB theory. (English) Zbl 0488.34050 J. Math. Phys. 23, 988-1002 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 22 Documents MSC: 34E20 Singular perturbations, turning point theory, WKB methods for ordinary differential equations Keywords:differential equations of arbitrary order; integral equations in one dimension; Stokes’ lines; asymptotic forms of the solutions; WKB eigenvalue problem; global dispersion relation PDF BibTeX XML Cite \textit{H. L. Berk} and \textit{K. V. Roberts}, J. Math. Phys. 23, 988--1002 (1982; Zbl 0488.34050) Full Text: DOI References: [1] DOI: 10.1103/PhysRev.71.360 · Zbl 0032.23405 · doi:10.1103/PhysRev.71.360 [2] DOI: 10.1063/1.1692529 · Zbl 0179.59101 · doi:10.1063/1.1692529 [3] DOI: 10.1143/JPSJ.47.286 · doi:10.1143/JPSJ.47.286 [4] DOI: 10.1063/1.524716 · Zbl 0457.65083 · doi:10.1063/1.524716 [5] DOI: 10.1090/S0002-9947-1908-1500810-1 · doi:10.1090/S0002-9947-1908-1500810-1 [6] DOI: 10.1007/BF01171084 · JFM 53.0419.02 · doi:10.1007/BF01171084 [7] DOI: 10.2307/2371046 · Zbl 0013.40005 · doi:10.2307/2371046 [8] DOI: 10.1063/1.1761905 · doi:10.1063/1.1761905 [9] DOI: 10.1002/cpa.3160040113 · Zbl 0054.09004 · doi:10.1002/cpa.3160040113 [10] DOI: 10.1029/JZ058i001p00029 · doi:10.1029/JZ058i001p00029 [11] DOI: 10.1103/PhysRevLett.15.878 · doi:10.1103/PhysRevLett.15.878 [12] DOI: 10.1063/1.1761837 · doi:10.1063/1.1761837 [13] DOI: 10.1063/1.1761511 · doi:10.1063/1.1761511 [14] DOI: 10.1063/1.1692267 · doi:10.1063/1.1692267 [15] Brillouin M. L., J. Phys. (Paris) 7 pp 353– (1926) [16] DOI: 10.1016/0003-4916(58)90032-0 · Zbl 0085.43103 · doi:10.1016/0003-4916(58)90032-0 [17] DOI: 10.1002/9780470142554.ch1 · doi:10.1002/9780470142554.ch1 [18] DOI: 10.1063/1.862834 · Zbl 0424.76096 · doi:10.1063/1.862834 [19] Stokes G. G., Trans. Cambridge Philos. Soc. 10 pp 106– (1857) [20] DOI: 10.1017/S0305004100032412 · doi:10.1017/S0305004100032412 [21] DOI: 10.1063/1.862949 · doi:10.1063/1.862949 [22] DOI: 10.1016/0003-4916(76)90040-3 · doi:10.1016/0003-4916(76)90040-3 [23] Miller W. H., Adv. Chem. Phys. 25 pp 69– (1974) · doi:10.1002/9780470143773.ch2 [24] DOI: 10.1103/PhysRevLett.22.876 · doi:10.1103/PhysRevLett.22.876 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.