The Wiener test for degenerate elliptic equations. (English) Zbl 0488.35034


35J70 Degenerate elliptic equations
35B45 A priori estimates in context of PDEs
Full Text: DOI Numdam EuDML


[1] L. CARLESON, Selected problems on exceptional sets, 1967, Van Nostrand. · Zbl 0189.10903
[2] R. COIFMAN and C. FEFFERMAN, Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51 (1974), 241-250. · Zbl 0291.44007
[3] J. DENY, Théorie de la capacité dans LES espaces fonctionnels, Séminaire Brelot-Choquet-Deny (Théorie du Potentiel). no. 1, (1964-1965), 1-13. · Zbl 0138.36605
[4] E.B. FABES, D.S. JERISON and C.E. KENIG, Boundary behavior of solutions of degenerate elliptic equations, preprint. · Zbl 0488.35034
[5] E.B. FABES, C.E. KENIG, and R.P. SERAPIONI, The local regularity of solutions of degenerate elliptic equations, Comm. in P.D.E., 7(1) (1982), 77-116. · Zbl 0498.35042
[6] F. GEHRING, The lp integrability of the partial derivatives of a quasi conformal mapping, Acta Math., 130 (1973), 266-277. · Zbl 0258.30021
[7] D. KINDERLEHRER and G. STAMPACCHIA, An introduction to variational inequalities and their applications, 1980, Academic Press, N.Y., N.Y. · Zbl 0457.35001
[8] W. LITTMAN, G. STAMPACCHIA and H. WEINBERGER, Regular points for elliptic equations with discontinuous coefficients, Ann. della Scuola Normale Sup. di Pisa, S. 3, vol. 17 (1963), 45-79. · Zbl 0116.30302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.