×

A survey of two-sample location-scale problem, asymptotic relative efficiencies of some rank tests. (English) Zbl 0488.62028


MSC:

62G10 Nonparametric hypothesis testing
62F03 Parametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference

Citations:

Zbl 0218.62039
Full Text: DOI

References:

[1] Doksum K. A., Statistica Neerlandica 31 pp 53– (1977)
[2] Duran B. S., Biometrika 63 pp 173– (1976)
[3] Gradshteyn I. S., Table of integrals. series and products (1965)
[4] Hajek J., Theory of rank tests (1967) · Zbl 0162.50503
[5] Lehmann E. L., Testing statistical hypothesis (1959) · Zbl 0089.14102
[6] DOI: 10.1093/biomet/58.1.213 · Zbl 0218.62039 · doi:10.1093/biomet/58.1.213
[7] DOI: 10.1093/biomet/60.1.113 · Zbl 0256.62041 · doi:10.1093/biomet/60.1.113
[8] DOI: 10.1080/03610927608827440 · Zbl 0351.62030 · doi:10.1080/03610927608827440
[9] J. Neyman, and E. S. Pearson (1930 ), On the problem of two samples, Bulletin de l’Academie Polonaise des Sciences et des lettres, Series A73 -96 . · JFM 56.1092.03
[10] DOI: 10.2307/2286870 · Zbl 0336.62017 · doi:10.2307/2286870
[11] Perng S. K., Statistica Neerlandica 32 pp 93– (1978)
[12] Puri M. L., Ann. Math. Statist. 35 pp 102– (1964)
[13] Randles R. H., JASA 66 pp 569– (1971)
[14] Sukhatme P. V., Proceeding India Academy of Sciences, Series A 2 pp 384– (1935)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.