Boyd, John P. The optimization of convergence for Chebyshev polynomial methods in an unbounded domain. (English) Zbl 0488.65035 J. Comput. Phys. 45, 43-79 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 67 Documents MSC: 65L10 Numerical solution of boundary value problems involving ordinary differential equations 34B05 Linear boundary value problems for ordinary differential equations Keywords:optimization of convergence; Chebyshev polynomial methods; unbounded domain; method of steepest descent; domain truncation; algebraic mapping; singular functions; optimum choice of domain size PDF BibTeX XML Cite \textit{J. P. Boyd}, J. Comput. Phys. 45, 43--79 (1982; Zbl 0488.65035) Full Text: DOI OpenURL References: [1] Grosch, C.E.; Orszag, S.A., J. comp. phys., 25, 273, (1977) [2] Gottlieb, D.; Orszag, S.A., Numerical analysis of spectral methods: theory and applications, (1977), Soc. Ind. and Appl. Math Philadelphia · Zbl 0412.65058 [3] Fox, D.; Parker, L., Chebyshev polynomials in numerical analysis, (1968), Oxford Univ. Press London · Zbl 0153.17502 [4] Elliot, D.; Szekeres, G., Math. comp., 18, 25, (1965) [5] Miller, G.F., J. SIAM numer. anal., 3, 390, (1966) [6] Elliot, D., Math. comp., 18, 274, (1964) [7] Boyd, J.P., Mon. wea. rev., 106, 1192, (1978) [8] Tuan, P.D.; Elliott, D., Math. comp., 26, 213, (1972) [9] Bender, C.E.; Orszag, S.A., Mathematical methods for scientists and engineers, (1978), McGraw-Hill New York · Zbl 0417.34001 [10] Abramowitz, M.; Stegun, I., () This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.