×

zbMATH — the first resource for mathematics

On some unconditionally stable, higher order methods for the numerical solution of the structural dynamics equations. (English) Zbl 0488.73087

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
65L20 Stability and convergence of numerical methods for ordinary differential equations
65D30 Numerical integration
65J99 Numerical analysis in abstract spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Brusa, Int. J. num. Meth. Engng 15 pp 685– (1980)
[2] Nørsett, BIT 14 pp 63– (1974)
[3] ’Semi-explicit Runge-Kutta methods’, Math. Comp. No. 6 (1974), Univ. of Trondheim.
[4] ’Sur l’approximation des équations différentielles opérationelles linéaires par des méthodes de Runge-Kutta’, Thesis, Univ. Paris VI (1975).
[5] Alexander, SIAM J. Num. Anal. 14 pp 1006– (1976)
[6] ’Some time-dependent soil-structure interaction problems’, Proc. NMSR Symp., pp. 251-290. Karlsruhe, 1975.
[7] Siemieniuch, BIT 16 pp 172– (1976)
[8] Nørsett, SIAM J. Num. Anal. 15 pp 1008– (1978)
[9] Wanner, BIT 18 pp 475– (1978)
[10] Wanner, BIT 20 pp 102– (1980)
[11] Calahan, Proc. I.E.E.E. 56 pp 744– (1968)
[12] Serbin, Comp. Meth. Appl. Mech. Engng. 23 pp 333– (1980)
[13] ’Evaluating time integration methods for nonlinear dynamics analysis’, in Finite Element Analysis of Transient Nonlinear Structural Behavior, (Eds. and ), pp. 35-58. ASME, New York, 1975.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.