Éléments finis mixtes incompressibles pour l’équation de Stokes dans \(R^ 3\). (French) Zbl 0488.76038


76D07 Stokes and related (Oseen, etc.) flows
76M99 Basic methods in fluid mechanics
49S05 Variational principles of physics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI EuDML


[1] Ciarlet, P.G., Raviart, P.A.: A mixed finite element method for the biharmonic equation. In: Mathematical aspects in finite element equation (C. de Boor ed.) pp. 125-145. Academic Press: New York. 1974 · Zbl 0337.65058
[2] Fortin, M.: Resolution numérique des équations de Navier-Stokes par des éléments finis de type mixte. In: 2nd International Symposium on finite element methods in flow problems. S. Margherita Ligure: Italie 1976
[3] Girault, V., Raviart, P.A.: Finite element approximation of the Navier-Stokes equations. In: Lectures Notes on Mathematics Vol. 749. Springer Verlag. Berlin 1979 · Zbl 0413.65081
[4] Glowinski, R.: Approximations externes par éléments finis d’ordre un et deux du problème de Dirichlet pour? 2. In: Topics in numerical analysis I (J.J.H. Miller ed.). pp. 123-171. Academic Press: London 1973
[5] Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod: Paris 1969
[6] Nedelec, J.C.: Mixed finite elements in ?3. Numer. Math.35, 315-341 (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[7] Raviart, P.A.: Méthodes d’éléments finis pour les équations de Navier-Stokes. Cours de l’Ecole d’Eté EDF-CEA-IRIA 1979
[8] Temam, R.: Navier-Stokes equations. North Holland, Amsterdam 1977 · Zbl 0383.35057
[9] Scholz, R.: A mixed method for 4th order problems using linear finite elements. RAIRO, Analyse Numerique12, 85-90 (1978) · Zbl 0382.65059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.