zbMATH — the first resource for mathematics

On primary ideals in the group algebra of a nilpotent Lie group. (English) Zbl 0489.22009

22E27 Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.)
22D15 Group algebras of locally compact groups
43A46 Special sets (thin sets, Kronecker sets, Helson sets, Ditkin sets, Sidon sets, etc.)
Full Text: DOI EuDML
[1] Boidol, J., Leptin, H., Schürmann, J., Vahle, D.: Räume primitiver Ideale von Gruppenalgebren. Math. Ann.236, 1-13 (1978) · Zbl 0371.46022
[2] Brown, I.D.: Dual topology of a nilpotent Lie group. Ann. Sci. Ecole Norm. Sup.6, Sér. 4, 407-411 (1973) · Zbl 0284.57026
[3] Dixmier, J.: Opérateurs de rang fini dans les représentations unitaires. Publ. Math. IHES6, 305-317 (1960) · Zbl 0100.32303
[4] Dixmier, J.: Algèbres enveloppantes. Paris Gauthier-Villars 1974 · Zbl 0308.17007
[5] Hey, H.J., Ludwig, J.: Der Satz von Helson-Reiter für spezielle nilpotente Lie-Gruppen. Math. Ann.239, 207-218 (1979) · Zbl 0388.22007
[6] Kirillow, A.A.: Unitary representations of nilpotent Lie groups. Usp. Math. Nauk17, 57-110 (1962)
[7] Kirsch, W., Müller D.: On the synthesis problem for orbits of Lie groups in ? n . Ark. Mat.18, 145-155 (1980) · Zbl 0478.43004
[8] Ludwig, J.: Polynomial growth and ideals in group algebras. Manuscripta Math.30, 215-221 (1980) · Zbl 0417.43005
[9] Ludwig, J.: On the synthesis problem for points in the dual of a nilpotent Lie group. Preprint 81 · Zbl 0535.43004
[10] Schwartz, L.: Théorie des distributions. Paris: Hermann 1966
[11] Dixmier, J., Malliavin, P.: Factorisation de fonctions et de vecteurs indéfiniment différentiables. Bull. Sci. math., II Sér.102, 305-330 (1978) · Zbl 0392.43013
[12] Reiter, H.: Classical harmonic analysis and locally compact groups. Oxford: Clarendon Press 1968 · Zbl 0165.15601
[13] Leptin, H.: Ideal theory in group algebras of locally compact groups. Invent. Math.31, 259-278 (1976) · Zbl 0328.22012
[14] Domar, Y.: On the spectral synthesis problem for (n?1)-dimensional subsets of ? n . Ark. Mat.9, 23-37 (1971) · Zbl 0212.15004
[15] Howe, R.: On a connection between nilpotent groups and oscillatory integrals associated to singularities. Pacific J. Math.73, 329-363 (1977) · Zbl 0383.22009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.