×

zbMATH — the first resource for mathematics

Quasiconformal mappings and extendability of functions in Sobolev spaces. (English) Zbl 0489.30017

MSC:
30C62 Quasiconformal mappings in the complex plane
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahlfors, L. V., Quasiconformal reflections,Acta Math., 109 (1963), 291–301. · Zbl 0121.06403
[2] Calderón, A. P., Lebesgue spaces of differentiable functions and distributions, inProc. Symp. Pure Math., Vol. IV, 1961, 33–49. · Zbl 0195.41103
[3] – Estimates for singular integral operators in terms of maximal functions.Studia Math., 44 (1972), 563–582. · Zbl 0222.44007
[4] Calderon, A. P. &Scott, R., Sobolev type inequalities forp>0.Studia Math., 62 (1978), 75–92. · Zbl 0399.46031
[5] Gehring, F. W., Extensions of quasiconformal mappings in three space.J. Analyse Math., 14 (1965), 171–182. · Zbl 0137.05505
[6] Gehring, F. W. Extension theorems for quasiconformal mappings inn-space.Proceedings of the International Congress of Mathematicians (Moscow, 1966), 313–318.
[7] – Extension theorems for quasiconformal mappings inn-space.J. Analyse Math., 19 (1967), 149–169. · Zbl 0177.33801
[8] Gehring, F. W. Characterizations of uniform domains. To appear. · Zbl 0615.30016
[9] Gehring, F. W. &Väisälä, J., The coefficients of quasiconformality of domains in space.Acta Math., 114 (1965), 1–70. · Zbl 0134.29702
[10] – Hausdorff dimension and quasiconrormal mappings,J. London Math. Soc., 6 (1973), 504–512. · Zbl 0258.30020
[11] Gol’dshtein, V. M., Latfullin, T. G. &Vodop’yanov, S. K., Criteria for extension of functions of the classL 2 1 from unbounded plain domains.Siberian Math. J. (English translation), 20: 2 (1979), 298–301. · Zbl 0436.30013
[12] Gol’dhtein, V. M., Reshetnyak, Yu. G. &Vodop’yanov, S. K., On geometric properties of functions with generalized first derivatives.Uspehi Mat. Nauk., 34: 1 (1979), 17–65. English translation inRussian Math. Surveys, 34: 1 (1979), 19–74.
[13] Hestenes, M., Extension of the range of a differentiable function.Duke Math. J., 8 (1941), 183–192. · Zbl 0024.38602
[14] Jerison, D. & Kenig, C., Boundary behavior of harmonic functions in nontagentially accessible domains. Preprint. · Zbl 0514.31003
[15] Jones, P. W., Extension theorems for BMO.Indiana Math. J., 29 (1980), 41–66. · Zbl 0432.42017
[16] Lehto, O. &Virtanen, K. I.,Quasiconformal mappings in the plane. 2nd ed., Springer-Verlag, New York, 1973. · Zbl 0267.30016
[17] Lichtenstein, L., Eine elementare Bemerkung zur reelen Analysis.Math. Z., 30 (1919). · JFM 47.0456.01
[18] Martio, O. & Sarvas, J., Injectivity theorems in the plane and space.Ann. Ann. Acad. Sci. Fenn. To appear. · Zbl 0406.30013
[19] Mostow, G. D., Quasiconformal mappings inn-space and the rigidity of hyperbolic space forms.I.H.E.S. Publ. Math., 34 (1968), 53–104. · Zbl 0189.09402
[20] Stein, E. M.,Singular integrals and differentiability properties of functions. Princeton University Press, Princeton. New Jersey, 1970. · Zbl 0207.13501
[21] Sullivan, D., The density at infinity of a discrete group of hyperbolic motions.I.H.E.S. Publ. Math., 50 (1979), 171–202. · Zbl 0439.30034
[22] Väisälä, J.,Lectures on n-dimensional quasiconformal mappings. Springer Lecture Notes in Math., 229, 1971. · Zbl 0221.30031
[23] Whitney, H., Analytic extensions of differentiable functions defined in closed sets.Trans. Amer. Math. Soc., 36 (1934), 63–89. · Zbl 0008.24902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.