×

zbMATH — the first resource for mathematics

Finitely generated ideals in \(A(\Omega)\). (English) Zbl 0489.32013

MSC:
32W05 \(\overline\partial\) and \(\overline\partial\)-Neumann operators
32U05 Plurisubharmonic functions and generalizations
32A38 Algebras of holomorphic functions of several complex variables
32C05 Real-analytic manifolds, real-analytic spaces
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] F. BEATROUS, Hölder estimates for the Z-equation with a support condition, Pacific J. Math., 90 (1980), 249-257. · Zbl 0453.32006
[2] K. DIEDERICH and J. E. FORNÆSS, Pseudoconvex domains : existence of Stein neighbourhoods, Duke J. Math., 44 (1977), 641-662. · Zbl 0381.32014
[3] J. E. FORNÆSS and A. NAGEL, The mergelyan property for weakly pseudoconvex domains, Manuscripta Math., 22 (1977), 199-208. · Zbl 0391.32010
[4] A. GLEASON, Finitely generated ideals in Banach algebras, J. Math. Mech., 13 (1964), 125-132. · Zbl 0117.34105
[5] G. M. HENKIN, Approximation of functions in pseudoconvex domains and Leibenzon’s theorem, Bull. Acad. Pol. Sci. Ser. Math. Astron. et Phys., 19 (1971), 37-42. · Zbl 0214.33701
[6] N. KERZMAN and A. NAGEL, Finitely generated ideals in certain function algebras, J. Funct. Anal., 7 (1971), 212-215. · Zbl 0211.43902
[7] J. J. KOHN, Boundary behavior of Z on weakly pseudoconvex manifolds of dimension two, J. Diff. Geom., 6 (1972), 523-542. · Zbl 0256.35060
[8] J. J. KOHN and L. NIRENBERG, A pseudoconvex domain not admitting a holomorphic support function, Math. Ann., 201 (1973), 265-268. · Zbl 0248.32013
[9] I. LIEB, Die Cauchy-riemannschen differentialgleichung auf streng pseudokonveksen gebieten : stetige randwerte, Math. Ann., 199 (1972), 241-256. · Zbl 0231.35055
[10] S. LOJASIEWICZ, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa, 19 (1965), 449-474. · Zbl 0128.17101
[11] M. RANGE, Øn Hölder estimates for zu = f on weakly pseudoconvex domains, Cortona Proceedings, Cortona, 1976-1977, 247-267. · Zbl 0421.32021
[12] N. ØVRELID, Generators of the maximal ideals of A (D), Pac. J. Math., 39 (1971), 219-233. · Zbl 0231.46090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.