La \(g\)-fonction de Littlewood-Paley associée à un opérateur différentiel singulier sur \((0,\infty)\). (The Littlewood-Paley’s \(g\)-function associated with à singular différential opérator on \((0,\infty)\)). (French) Zbl 0489.34022


34L99 Ordinary differential operators
47E05 General theory of ordinary differential operators


Zbl 0193.105
Full Text: DOI Numdam EuDML


[1] S. BOCHNER, Proceeding of the conference on differential equations, 24-28, College Park Maryland, University of Maryland, Book Store (1956).
[2] H. CHEBLI, Sur un théorème de Paley-Wiener associé à la décomposition spectrale d’un opérateur de Sturm-Liouville sur ]0, ∞[, J. Func. Anal., Vol. 17 (1974), 447-461. · Zbl 0288.47040
[3] E. STEIN, Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. of Math. Studies, n° 63, Princeton Univ. Press, (1970). · Zbl 0193.10502
[4] K. TAIRA, A strong maximum-principle for degenerate elliptic operators, Comm. In Partial. Diff. Equations, 4(11) (1979), 1201-1212. · Zbl 0467.35021
[5] K. TRIMECHE, Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0, ∞), J. Math. Pures et Appl., 60 (1981), 51-98. · Zbl 0416.44002
[6] A. ZYGMUND, Trigonometric series, 2nd ed., Cambridge Univ. Press., New-York, 1959. · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.