×

On the convergence of the minimum points of non equicoercive quadratic functionals. (English) Zbl 0489.49010


MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
35J70 Degenerate elliptic equations
35J20 Variational methods for second-order elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Buttazzo G., J. Analyse Math. 37 pp 145– (1980) · Zbl 0446.49012 · doi:10.1007/BF02797684
[2] Cioranescu D., J. Math. Anal. Appl. 71 pp 590– (1979) · Zbl 0427.35073 · doi:10.1016/0022-247X(79)90211-7
[3] Carbone L., Ann. Mat. Pura App1. 122 (4) pp 1– (1979) · Zbl 0474.49016 · doi:10.1007/BF02411687
[4] De Giorgi E., Rome (1979)
[5] De Giorgi E., Atti Accad. Naz. I,incei Rend. Cl. Sc. Fis. Mat. Natur 58 (8) pp 842– (1975)
[6] Littman W., Ann. Scuola Norm. Sup. Pisa C1. Sci. 17 (3) pp 45– (1963)
[7] Marcellini P., Ann. Mat. Pura Appl. 117 (4) pp 139– (1978) · Zbl 0395.49007 · doi:10.1007/BF02417888
[8] Marcellini P., J. Mat. Pures Appl. 56 (9) pp 157– (1977)
[9] Sbordone C., Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 (4) pp 617– (1975)
[10] Spagnolo S., Ann.Scuola Norm.Sup.Pisa Cl. Sci. 22 (3) pp 577– (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.