×

zbMATH — the first resource for mathematics

On numerical evaluation of maximum-likelihood estimates for finite mixtures of distributions. (English) Zbl 0489.62028

MSC:
62F10 Point estimation
65C99 Probabilistic methods, stochastic differential equations
62F12 Asymptotic properties of parametric estimators
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] С. А. Айвазян З. И. Бежаева О. В. Староверов: Классификация многомерных наблюдений. (Classification of Multivariate Observations). Ctatnctnka, Москва 1974. · Zbl 0341.10006
[2] Н. Н. Апраушева: Алгоритм расщепления смеси нормальных классов. (Algorithm for resolution of a mixture of normal classes). C6. Программы и алгоритмы (1976), 68. · Zbl 1079.34527 · doi:10.1143/PTP.55.1710
[3] Н. Н. Апраушева: Определение числа классов в задачах классификации I. (Determination of the number of classes in classification problems I). Известия АН СССР - Тєх. кибернетика (1981), 3, 71-77. · Zbl 1024.00503
[4] J. Behboodian: On a mixture of normal distributions. Biometrika 57 (1970), 1, 215-217. · Zbl 0193.18104 · doi:10.1093/biomet/57.1.215
[5] C. G. Bhattacharya: A simple method of resolution of a distribution into Gaussian components. Biometrics 23 (1967), 115-137.
[6] W. R. Blischke: Moment estimators for the parameters of a mixture of two binomial distributions. Ann. Math. Statist. 33 (1962), 2, 444-454. · Zbl 0131.17804 · doi:10.1214/aoms/1177704571
[7] W. R. Blischke: Mixtures of distributions. Classical and Contagious Discrete Distributions (G. P. Patil, Pergamon Press, New York 1963. · Zbl 0128.13501
[8] W. R. Blischke: Estimating the parameters of mixtures of binomial distributions. J. Amer. Statist. Assoc. 59 (1964), 306, 510-528. · Zbl 0128.13501 · doi:10.2307/2283005
[9] C. Bürrau: The half-invariants of the sum of two typical laws of errors with an application to the problem of dissecting a frequency curve into components. Scand. Actuar. J. 77 (1934), 1, 1-5.
[10] C. V. L. Charlier: Researches into the theory of probability. Meddelanden fran Lunds Astron. Observ. (1906) Sec. 2, Bd. 1. · JFM 37.0271.15
[11] A. C. Cohen: Discussion of ”Estimation of parameters for a mixture of normal distributions” by Victor Hasselblad. Technometrics 8 (1966), 3, 445-446.
[12] A. C. Cohen: Estimation in mixtures of two normal distributions. Technometrics 9 (1967), 15-28. · Zbl 0147.18104 · doi:10.2307/1266315
[13] P. W. Cooper: Some topics on nonsupervised adaptive detection for multivariate normal distributions. Computer and Information Sciences - II. (J. T. Tou, Academic Press, New York 1967. · Zbl 0214.47205
[14] N. E. Day: Estimating the components of a mixture of normal distributions. Biometrika 56 (1969), 463-474. · Zbl 0183.48106 · doi:10.1093/biomet/56.3.463
[15] N. P. Dick D. C. Bowden: Maximum likelihood estimation for mixtures of two normal distributions. Biometrics 29 (1973), 4, 781 - 790.
[16] G. Doetsch: Zerlegung einer Funktion in Gaussche Fehlerkurven und zeitliche Zurückverfolgung eines Temperaturzustandes. Math. Z. 41 (1936), 283 - 318. · Zbl 0014.21301 · doi:10.1007/BF01180420 · eudml:168664
[17] R. O. Duda P. E. Hart: Pattern Classification and Scene Analysis. John Wiley, New York-London 1973. · Zbl 0277.68056
[18] E. B. Fowlkes: Some methods for studying the mixture of two normal (lognormal) distributions. J. Amer. Statist. Assoc. 74 (1979), 367, 561-575. · Zbl 0434.62024 · doi:10.2307/2286973
[19] J. G. Fryer C. A. Roberston: A comparison of some methods of estimating mixed normal distributions. Biometrika 59 (1972), 639-648. · Zbl 0255.62033 · doi:10.1093/biomet/59.3.639
[20] N. T. Gridgeman: A comparison of two methods of analysis of normal distributions. Technometrics 12 (1970), 4, 832-833. · Zbl 0203.51904
[21] J. Grim: Metody shlukové analýzy a jejich využití při zpětnovazebním řízení velkých systému. (Methods of cluster analysis and their application for feedback control of large systems). Dissertation, Institute of Information Theory and Automation, Prague 1979.
[22] J. Grim: An algorithm for maximizing a finite sum of positive functions and its application to cluster analysis. Problems of Control and Information Theory 10 (1981), 6, 427-437. · Zbl 0476.65100
[23] E. J. Gumbel: La dissection d’une repartition. Annales de l’Université de Lyon 3 (1939), 39-51. · Zbl 0063.01784
[24] A. K. Gupta T. Miyawaki: On uniform mixture model. Biometrical J. 20 (1978), 631 - 637. · Zbl 0406.62016 · doi:10.1002/bimj.4710200202
[25] L. F. Guseman J. R. Walton: Methods for estimating proportions of convex combinations of normals using linear feature selection. Comm. Statist. A - Theory Methods A7 (1978), 1439-1450. · Zbl 0394.62043 · doi:10.1080/03610927808827726
[26] V. Hasselblad: Estimation of parameters for a mixture of normal distributions. Technometrics 8 (1966), 431-444.
[27] V. Hasselblad: Finite mixtures of distributions from the exponential family. Ph. D. Dissertation University of California, Los Angeles 1967.
[28] V. Hasselblad: Estimation of finite mixtures of distributions from the exponential family. J. Amer. Statist. Assoc. 64 (1969), 328, 1459-1471.
[29] B. M. Hill: Information for estimating the proportions in mixtures of exponential and normal distributions. J. Amer. Statist. Assoc. 58 (1963), 918-932.
[30] D. W. Hosmer: A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of samples. Biometrics 29 (1973), 761-770.
[31] D. W. Hosmer: A use of mixtures of two normal distributions in a classification problem. J. Statist. Comput. Simulation 6 (1978), 384, 281-294. · Zbl 0381.62051 · doi:10.1080/00949657808810196
[32] D. W. Hosmer N. P. Dick: Information and mixtures of two normal distributions. J. Statist. Comput. Simulation 6 (1977), 137-148. · Zbl 0366.62038 · doi:10.1080/00949657708810178
[33] О. К. Исаенко К. Ю. Урбах: Разделение смесей распределений вероятностей на их составляюшие. (Decomposition of mixtures of probability distributions into their components). Теория вероятностей и математическая статистика, теор. кибернетика, том 13, 37-58, BNHNTN, Москва 1976.
[34] I. R. James: Estimation of the mixing proportion in a mixture of two normal distributions from simple rapid measurements. Biometrics 34 (1978), 2, 265-275. · Zbl 0384.62027 · doi:10.2307/2530016
[35] E. John: Bayesian estimation of mixture distributions. Ann. Math. Statist, 39 (1968), 4, 1289-1302. · Zbl 0162.49703 · doi:10.1214/aoms/1177698254
[36] B. K. Kale: On the solution of likelihood equations by iteration processes: The multiparametric case. Biometrika 49 (1962), 479-486. · Zbl 0118.14301 · doi:10.1093/biomet/49.3-4.479
[37] R. Kanno: Estimation of parameters for a mixture of two normal distributions. Rep. Statist. Appl. Res. JUSE 22 (1975), 4, 1-15. · Zbl 0356.62024
[38] S. Kullback: An information-theoretic derivation of certain limit relations for a stationary Markov Chain. SIAM J. Control 4 (1966), 3, 454-459. · Zbl 0199.21301 · doi:10.1137/0304035
[39] S. Kullback: Information Theory and Statistics. Wiley, New York-Dover 1968. · Zbl 0088.10406
[40] P. D. M. Macdonald: Estimation of finite distribution mixtures. Applied Statistics (R. P. Gupta, North-Holland 1975. · Zbl 0303.62023
[41] P. Medgyessy: Decomposition of Superpositions of Density Functions and Discrete Distributions. Akadémiai Kiadó, Budapest 1977. · Zbl 0363.60013
[42] G. Meeden: Bayes estimation of the mixing distributions, the discrete case. Ann. Math. Statist. 43 (1972), 6, 1993-1999. · Zbl 0252.62026 · doi:10.1214/aoms/1177690872
[43] W. Molenaar: Survey of estimation methods for a mixture of two normal distributions. Statist. Neerlandica 19 (1965), 4, 249-265.
[44] G. D. Murray D. M. Titterington: Estimation problems with data from a mixture. Appl. Statist. 27(1978), 3, 325-334. · Zbl 0437.62036 · doi:10.2307/2347169
[45] K. Pearson: Contributions to the mathematical theory of evolution 1: Dissection of frequency curves. Philos. Trans. Roy. Soc. London Ser. A 185 (1894), 71-110. · JFM 25.0347.02
[46] B. C. Peters W. A. Coberly: The numerical evaluation of the maximum-likelihood estimate of mixture proportions. Comm. Statist. A - Theory Methods A5 (1976), 12, 1127-1135. · Zbl 0364.62023 · doi:10.1080/03610927608827429
[47] B. C. Peters H. F. Walker: An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions. SIAM J. Appl. Math. 35 (1978), 2, 362-378. · Zbl 0443.65112 · doi:10.1137/0135032
[48] B. C. Peters H. F. Walker: The numerical evaluation of the maximum-likelihood estimate of a subset of mixture proportions. SIAM J. Appl. Math. 35 (1978), 3,447-452. · Zbl 0405.62024 · doi:10.1137/0135036
[49] J. G. Postaire C. P. A. Vasseur: An approximate solution to normal mixture identification with application to unsupervised pattern classification. IEEE Trans, on Pattern Analysis & Machine Intelligence PAMI-3 (1981), 2, 163-179.
[50] R. E. Quandt J. B. Ramsey: Estimating mixtures of normal distributions and switching regressions. J. Amer. Statist. Assoc. 73 (1978), 364, 730-752. · Zbl 0401.62024 · doi:10.2307/2286266
[51] C. R. Rao: Advanced Statistical Methods in Biometric Research. John Wiley and Sons, New York 1952. · Zbl 0047.38601
[52] P. R. Rider: The method of moments applied to a mixture of two exponential distributions. Ann. Math. Statist. 32 (1961), 1, 143-147. · Zbl 0106.13101 · doi:10.1214/aoms/1177705147
[53] W. Schilling: A frequency distribution represented as the sum of two Poisson distributions. J. Amer. Statist. Assoc. 42 (1947), 407-424.
[54] D. F. Stanat: Unsupervised learning of mixtures of probability functions. Pattern Recognition (L. Kanal, Thompson Book Co., Washington D. C. 1968, 357-389.
[55] B. Stromgren: Tables and diagrams for dissecting a frequency curve into components by the half-invariant method. Scand. Actuar. J. 17 (1934), 1, 7-54. · Zbl 0008.26602
[56] М. И. Шлезингер: Взаимосвязъ обучения и самообучения в разпознавании образов. (Relation between learning and self-learning in pattern recognition). Кивернетика (Киев) (1968), 2, 81-88. · Zbl 1099.01025
[57] W. Y. Tan W. C. Chang: Some comparisons of the method of moments and the method of maximum likelihood in estimating parameters of a mixture of two normal densities. J. Amer. Statist. Assoc. (57(1972), 339, 702-708. · Zbl 0245.62039 · doi:10.2307/2284472
[58] H. F. Walker: Estimating the proportions of two populations in a mixture using linear maps. Comm. Statist. A - Theory Methods A9 (1980), 8, 837-849. · Zbl 0437.62019 · doi:10.1080/03610928008827924
[59] J. H. Wolfe: A computer program for the maximum likelihood analysis of types. (Technical Bulletin 65-15), U.S. Naval Personnel Research Activity, San Diego 1965.
[60] J. H. Wolfe: NORMIX: computational methods for estimating the parameters of multivariate normal mixtures of distributions. (Research Memorandum SRM 68-2), U.S. Naval Personnel Research Activity, San Diego 1967.
[61] J. H. Wolfe: Pattern clustering by multivariate mixture analysis. Multivariate Behavioral Research 5 (1970), July, 329-350.
[62] S. J. Yakowitz: Unsupervised learning and the identification of finite mixtures. IEEE Trans. Inform. Theory IT- 16 (1970), 5, 330-338. · Zbl 0197.45502 · doi:10.1109/TIT.1970.1054442
[63] T. Y. Young G. Coraluppi: Stochastic estimation of a mixture of normal density functions using an information criterion. IEEE Trans. Inform. Theory IT-16 (1970), 258-263. · Zbl 0206.19803 · doi:10.1109/TIT.1970.1054454
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.