Two-dimensional approximations of three-dimensional eigenvalue problems in plate theory. (English) Zbl 0489.73057


74K20 Plates
74H45 Vibrations in dynamical problems in solid mechanics
31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions
Full Text: DOI


[1] Ciarlet, P. G.; Kesavan, S., Approximation bidimensionnelle du problème de valeurs propres pour une plaque, C.R. Acad. Sci. Paris, 289, 579-582 (1979) · Zbl 0416.73051
[2] Ciarlet, P. G.; Destuynder, P., A justification of the two-dimensional linear plate model, J. Mécanique, 18, 315-344 (1979) · Zbl 0415.73072
[3] Ciarlet, P. G.; Destuynder, P., A justification of a nonlinear model in plate theory, Comput. Meths. Appl. Mech. Engrg., 17/18, 227-258 (1979) · Zbl 0405.73050
[4] Ciarlet, P. G., A justification of the von Kármán equations, Arch. Rational Mech. Anal., 73, 349-389 (1980) · Zbl 0443.73034
[5] Destuynder, P., Sur une justification mathématique des théories de plaques et de coques en élasticité linéaire, (Dissertation (1979), Université Pierre et Marie Curie: Université Pierre et Marie Curie Paris)
[6] Lions, J. L., Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal, (Lecture Notes in Mathematics, Vol. 323 (1973), Springer: Springer Berlin) · Zbl 0268.49001
[7] Kesavan, S., Sur l’Approximation de problèmes Linéaires et non-linéaires de valeurs propres, (Dissertation (1979), Université Pierre et Marie Curie: Université Pierre et Marie Curie Paris)
[8] Kesavan, S., Homogeneization of eigenvalue problems: part 1, Appl. Math. Optim., 5, 153-167 (1979) · Zbl 0415.35061
[9] D. Caillerie, The effect of a thin inclusion of high rigidity in an elastic body, Math. Meths. Appl. Sci., to appear.; D. Caillerie, The effect of a thin inclusion of high rigidity in an elastic body, Math. Meths. Appl. Sci., to appear. · Zbl 0446.73014
[10] Rigolot, A., Approximation asymptotique des vibrations de flexion des poutres droites élastiques, J. Mécanique, 16, 493-529 (1977) · Zbl 0403.73067
[11] Babus̆ka, I.; Aziz, A. K., Survey lectures on the mathematical foundations of the finite element method, (Aziz, A. K., The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (1972), Academic Press: Academic Press New York), 3-359 · Zbl 0268.65052
[12] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0445.73043
[13] Strang, G.; Fix, G. J., An Analysis of the Finite Element Method (1973), Prentice-Hall: Prentice-Hall Englewood Cliffs · Zbl 0278.65116
[14] Duvaut, G.; Lions, J. L., Les Inéquations en Mécanique et en Physique (1972), Dunod: Dunod Paris · Zbl 0298.73001
[15] Landau, L.; Lifchitz, E., Théorie de l’Elasticité (1967), Mir: Mir Moscow · Zbl 0166.43101
[16] Fichera, G., Existence theorems in elasticity-Boundary value problems of elasticity with unilateral constraints, (Flügge, S.; Truesdell, C., Mechanics of Solids II. Mechanics of Solids II, Encyclopedia of Physics, Vol. VI (1972), Springer: Springer Berlin), 347-424, a/2
[17] Taylor, A. E., Introduction to Functional Analysis (1958), Wiley: Wiley New York · Zbl 0081.10202
[18] Courant, R.; Hilbert, D., (Methods of Mathematical Physics, Vol. 1 (1953), Interscience: Interscience New York) · Zbl 0729.00007
[19] de Veubeke, B. Fraeijs, A Course in Elasticity, (Applied Mathematical Sciences Series, Vol. 29 (1979), Springer: Springer Berlin) · Zbl 0245.73031
[20] Lions, J. L.; Magenes, E., (Problèmes aux Limites Non Homogènes et Applications, Vol. 1 (1968), Dunod: Dunod Paris) · Zbl 0165.10801
[21] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Varangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. R-2, 129-151 (1974) · Zbl 0338.90047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.