Siu, Yum-Tong; Yang, Paul Compact Kaehler-Einstein surfaces of nonpositive bisectional curvature. (English) Zbl 0491.53041 Invent. Math. 64, 471-487 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 6 Documents MSC: 53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.) 53C55 Global differential geometry of Hermitian and Kählerian manifolds Keywords:Einstein metrics; curvature pinching; complex surfaces; isometry; biholomorphism × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Berger, M.: Sur les variétés d’Einstein compacts. C.R. IIIe Reunion Math. Expression Latine, Namur, 35-55 (1965) [2] Frankel, T.: Manifolds with positive curvature. Pacific J. Math.11, 165-174 (1961) · Zbl 0107.39002 [3] Gray, A.: Compact Kähler manifolds with nonnegative sectional curvature. Invent. Math.41, 33-43 (1977) · Zbl 0364.53027 · doi:10.1007/BF01390163 [4] Mori, S.: Projective manifolds with ample tangent bundles. Ann. of Math.110, 593-606 (1979) · Zbl 0423.14006 · doi:10.2307/1971241 [5] Mostow, D., Siu, Y.-T.: A compact Kähler surface of negative curvature not covered by the ball. Ann. of Math.112, 321-360 (1980) · Zbl 0453.53047 · doi:10.2307/1971149 [6] Siu, Y.-T., Yau, S.-T.: Compact Kähler manifolds of positive bisectional curvature. Invent. Math.59, 189-204 (1980) · Zbl 0442.53056 · doi:10.1007/BF01390043 [7] Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I. Comm. Pure Appl. Math.31, 339-411 (1978) · Zbl 0369.53059 · doi:10.1002/cpa.3160310304 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.