×

zbMATH — the first resource for mathematics

Minimization of extended quadratic functions. (English) Zbl 0491.65038

MSC:
65K05 Numerical mathematical programming methods
90C20 Quadratic programming
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Boland, W.R., Kamgnia, E.R., Kowalik, J.S.: A conjugate gradient optimization method invariant to nonlinear scaling. J. Optimization Theory Appl.27, 221-230 (1979) · Zbl 0396.49024 · doi:10.1007/BF00933228
[2] Boland, W.R., Kowalik, J.S.: Extended conjugate gradient methods with restarts. J. Optimization Theory Appl.28, 1-9 (1979) · Zbl 0416.49019 · doi:10.1007/BF00933597
[3] Dixon, L.C.W.: Conjugate gradient algorithms, quadratic termination without linear searches. J. Inst. Math. Appl.15, 9-18 (1975) · Zbl 0294.90076 · doi:10.1093/imamat/15.1.9
[4] Lenard, M.L.: Accelerated conjugate direction methods for unconstrained optimization. J. Optimization Theory Appl.25, 11-32 (1978) · Zbl 0352.90058 · doi:10.1007/BF00933252
[5] Shanno, D.F.: Conjugate gradient methods with inexact searches. Math. Operations Res.3, 224-256 (1978) · Zbl 0399.90077 · doi:10.1287/moor.3.3.244
[6] Shanno, D.F., Phua, K.H.: A variable method subroutine for unconstrained nonlinear minimization. MIS Technical Report No. 28, Department of Management Information Systems, University of Arizona, Tuscon, Arizona 85721, USA · Zbl 0319.65042
[7] Sloboda, F.: A generalized conjugate gradient algorithm for minimisation. Numer. Math.35, 223-230 (1980) · Zbl 0424.65033 · doi:10.1007/BF01396318
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.