Banica, Constantin Sur les Ext-globaux dans une déformation. (French) Zbl 0492.32023 Compos. Math. 44, 17-27 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 Document MSC: 32G05 Deformations of complex structures 32C35 Analytic sheaves and cohomology groups 32L05 Holomorphic bundles and generalizations Keywords:coherent vector bundle; Ext-spaces; deformation of complex structures PDF BibTeX XML Cite \textit{C. Banica}, Compos. Math. 44, 17--27 (1981; Zbl 0492.32023) Full Text: Numdam EuDML References: [1] C. Bănică and V. Brînzănescu : Hilbert-Samuel polynomials of a proper morphism . Math.-Z. 158 (1978) 107-124. · Zbl 0353.32014 · doi:10.1007/BF01320861 · eudml:172624 [2] C. Bănică , M. Putinar and G. Schumacher : Variation der globalen Ext in Deformationen kompakter komplexen Räume . Math. Ann. 250 (1980) 135-165. · Zbl 0438.32007 · doi:10.1007/BF02599792 · eudml:163416 [3] J. Bingener : Offenheit der Versalität in der analytischen Geometrie . Math. Z. 173 (1980) 241-281. · Zbl 0493.32020 · doi:10.1007/BF01159663 · eudml:172987 [4] V. Brînzănescu and M. Stoia : Topological trivial rank-2 vector bundles on a ruled surface (in preparation). · Zbl 0547.14006 [5] G. Ellingsrud and S.A. Strømme : On the moduli space of stable rank-2 vector bundles on P2 . Preprint, Oslo (1979). · Zbl 0632.14013 [6] Ph A. Griffiths : The extension problem for compact submanifolds of compact manifolds , Proceedings of the Conference on Complex Analysis, Minneapolis (1964). · Zbl 0141.27403 [7] R. Hartshorne : Algebraic Geometry , Springer-Verlag (1977). · Zbl 0367.14001 [8] H. Lange : Families of Extensions , Erlangen (Preprint). · Zbl 0518.14008 [9] D. Mumford : Lectures on curves on an algebraic surface , Annals of Math. Studies, 59, Princeton (1966). · Zbl 0187.42701 · doi:10.1515/9781400882069 [10] V.P. Palamodov : Deformations of complex spaces , Russian Math. Surveys 31 (1976) 129-197. · Zbl 0347.32009 · doi:10.1070/RM1976v031n03ABEH001549 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.