zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Discrete delay, distributed delay and stability switches. (English) Zbl 0492.34064

MSC:
34K20Stability theory of functional-differential equations
34D20Stability of ODE
92B05General biology and biomathematics
34A30Linear ODE and systems, general
WorldCat.org
Full Text: DOI
References:
[1] Ansoff, H. I.; Krumhansl, J. A.: A general stability criterion for linear oscillating systems with constant time lag. Quart. appl. Math. 6, 337-341 (1948) · Zbl 0033.18101
[2] Bellman, R.; Cooke, K. L.: Differential-difference equations. (1963) · Zbl 0105.06402
[3] Brauer, F.: Decay rates for solutions of a class of differential-difference equations. SIAM J. Math. anal. 10, 783-788 (1979) · Zbl 0417.34114
[4] Brauer, F.: Characteristic return times for harvested population models with time lag. Math. biosci. 45, 295-311 (1979) · Zbl 0412.92017
[5] Cushing, J. M.: Integrodifferential equations and delay models in population dynamics. Lecture notes in biomathematics 20 (1977) · Zbl 0363.92014
[6] Cushing, J. M.: Volterra integrodifferential equations in population dynamics. Mathematics of biology, 81-148 (1981)
[7] Datko, R.: A procedure for determination of the exponential stability of certain differential-difference equations. Quart. appl. Math. 36, 279-292 (1978) · Zbl 0405.34051
[8] Dieudonné, J.: Foundations of modern analysis. (1960) · Zbl 0100.04201
[9] Iii, J. J. Distefano; Stubbard, A. R.; Williams, I. J.: Feedback and control systems. Schaum’s outline series (1967)
[10] El’sgol’ts, L. E.: Introduction to the theory of differential equations with deviating arguments. (1973)
[11] Fargue, D.: Reductibilité des systèmes héréditaires à des systèmes dynamique (régis par des équations différentielles ou aux dérivées partielles). C. R. Acad. sci. Paris sér. B 277, 471 (1973)
[12] Goodwin, B. C.: Gweber advances in enzyme regulation. Advances in enzyme regulation, 425 (1965)
[13] Grossman, Z.; Gumowski, I.: Effect of pure delay on the dynamic properties of a second-order phase-lock loop. Abh. akad. Wiss. 1, 271-278 (1977) · Zbl 0359.34067
[14] Grossman, Z.; Gumowski, I.: Self sustained oscillations in the jacob-monod model of gene regulation. Lecture notes in computer science no. 40, 145-154 (1976)
[15] Gumowski, I.: Automatica J. IFAC. 10, 659 (1974)
[16] Macdonald, N.: Time lags in biological models. Lecture notes in biomathematics 27 (1978) · Zbl 0403.92020
[17] Macdonald, N.: Time delay in prey-predator models. Math. biosci. 28, 321-330 (1976) · Zbl 0324.92016
[18] Mees, A. I.; Rapp, P. E.: Oscillations in multi-loop feedback biochemical control networks. J. math. Biol. 5, 99 (1978) · Zbl 0395.92014
[19] Minorsky, N.: Self-excited oscillations in dynamical systems possessing retarded actions. J. appl. Mech. 9, A65-A71 (1942)
[20] Minorsky, N.: Experiments with activated tanks. Trans. ASME 69, 735-747 (1947)
[21] Morris, H. C.: A perturbative approach to periodic solutions of delay-differential equations. J. inst. Math. appl. 18, 15-24 (1976) · Zbl 0346.34057
[22] Mufti, I. H.: A note on the stability of an equation of third order with time lag. IEEE trans. Automat. control 9, 190-191 (1964)
[23] Ogata, K.: State space analysis of control systems. (1967) · Zbl 0178.09801
[24] Pinney, E.: Ordinary difference-differential equations. (1958) · Zbl 0091.07901
[25] Tyson, J. J.: Periodic enzyme synthesis: reconsideration of the theory of oscillatory repression. J. theoret. Biol. 80, 27-38 (1979)
[26] Vogel, T.: Systèmes évolutifs. (1965) · Zbl 0132.21701