On some functional equations of the information theory. (English) Zbl 0492.39006


39B99 Functional equations and inequalities
94A17 Measures of information, entropy
Full Text: DOI


[1] J. Aczél-Z. Daróczy, Characterisierung der Entropien positiver Ordnung und der Shannonschen Entropie,Acta Math. Acad. Sci. Hungar.,14 (1963), 95–121. · Zbl 0138.14904
[2] J. Aczél andZ. Daróczy,On measures of information and their characterizations Academic Press (New York-San Francisco-London, 1975).
[3] T. W. Chaundy andJ. B. Mcleod, On a functional equation,Edinburgh Math. Notes,43 (1960) 7–8. · Zbl 0100.32703
[4] M. Behara andP. Nath, Additive and non-additive entropies of finite measurable partitions.Probability and Information Theory II. Lecture Notes in Math. Vol. 296, 102–138. Springer Verlag (Berlin-Heidelberg-New York, 1973). · Zbl 0282.94020
[5] Z. Daróczy, On the measurable solutions of a functional equations,Acta Math. Acad. Sci. Hungar.,22 (1971), 11–14. · Zbl 0236.39008
[6] Z. Daróczy andA. Járai, On measurable solutions of functional equations,Acta Math. Acad. Sci. Hungar.,34 (1979), 105–116. · Zbl 0424.39002
[7] Z. Daróczy andL. Losonczi, Über die Erweiterung der auf einer Punktmenge additiven Funktionen,Publ. Math. Debrecen,14 (1967), 239–245. · Zbl 0175.15305
[8] Pl. Kannappan, On a generalization of some measures in information theory,Glasnik Mat.,9 (29) (1974), 81–93. · Zbl 0287.39006
[9] L. Losonczi, A characterization of entropies of degree {\(\alpha\)}. To appear inMetrika. · Zbl 0469.94005
[10] Gy. Maksa, On the bounded solutions of a functional equation. Submitted toActa Math. Acad. Sci. Hungar. · Zbl 0472.39003
[11] D. P. Mittal On continuous solutions of a functional eguation,Metrika,22 (1970), 31–40.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.