Smooke, Mitchell D. Solution of burner-stabilized premixed laminar flames by boundary value methods. (English) Zbl 0492.65065 J. Comput. Phys. 48, 72-105 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 33 Documents MSC: 65Z05 Applications to the sciences 65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs 65N22 Numerical solution of discretized equations for boundary value problems involving PDEs 80A25 Combustion 65L10 Numerical solution of boundary value problems involving ordinary differential equations 65L50 Mesh generation, refinement, and adaptive methods for ordinary differential equations Keywords:one-dimensional steady state premixed laminar flame equations; damped- modified Newton method; combustion Software:COLSYS; PASVA3; CHEMKIN PDFBibTeX XMLCite \textit{M. D. Smooke}, J. Comput. Phys. 48, 72--105 (1982; Zbl 0492.65065) Full Text: DOI References: [1] Miller, J. A.; Mitchell, R. E.; Smooke, M. D.; Kee, R. J., Toward a Compehensive Chemical Kinetic Mechanism for the Oxidation of Acetylene: Comparison of Model Predictions with Results from Flame and Shock Tube Experiments, (submitted to the 19th Symposium (International) on Combustion (1982)) [2] Hirschfelder, J. O.; Curtiss, C. F.; Campbell, D. F., J. Phys. Chem., 57, 403 (1953) [3] Spalding, D. B., Philos. Trans. R. Soc. London, 249A, 1 (1956) [4] Adams, G. K.; Cook, G. B., Combust. Flame, 4, 9 (1959) [5] Dixon-Lewis, G., (Proc. R. Soc. London, 298A (1967)), 495 [6] Westbrook, C. K.; Dryer, F. L., Combust. Sci. Technol., 20, 125 (1979) [7] Westbrook, C. K.; Dryer, F. L., Combust. Flame, 37, 171 (1980) [8] Spalding, D. B.; Stephenson, D. L., (Proc. R. Soc. London, 324A (1971)), 315 [9] Bledjian, L., Combust. Flame, 20, 5 (1973) [10] Margolis, S. B., J. Comput. Phys., 27, 410 (1978) · Zbl 0404.76088 [11] Dixon-Lewis, G., (Proc. R. Soc. London, 317A (1970)), 235 [12] Wilde, K. A., Combust. Flame, 18, 43 (1972) [13] Kendall, R. M.; Kelly, J. T., Aerotherm TR-75-158 (1975) [14] Bulirsch, R.; Stoer, J.; Deuflhard, P., Numerical Solution of Nonlinear Two-Point Boundary Value Problems I, Numer. Math. Handbook Series Approximation (1976) · Zbl 0339.65048 [15] Gladwell, I., The Development of the Boundary-Value Codes in the Ordinary Differential Equations Chapter of the NAG Library, (presented at the Working Conference for Codes for Boundary Value Problems in ODE’s. presented at the Working Conference for Codes for Boundary Value Problems in ODE’s, Houston (1978)) · Zbl 0434.65068 [16] Scott, M. L.; Watts, H. A., SIAM J. Numer. Anal., 14, 40 (1977) · Zbl 0357.65058 [17] Pereyra, V., PASVA 3: An Adaptive Finite Difference FORTRAN Program for First Order Nonlinear, Ordinary Boundary Problems, (presented at the Working Conference for Codes for Boundary Value Problems in ODE’s. presented at the Working Conference for Codes for Boundary Value Problems in ODE’s, Houston (1978)) · Zbl 0434.65067 [18] Ascher, U.; Christiansen, J.; Russell, R. D., COLSYS—A Collocation Code for Boundary Value Problems, (presented at the Working Conference for Codes for Boundary Value Problems in ODE’S. presented at the Working Conference for Codes for Boundary Value Problems in ODE’S, Houston (1978)) · Zbl 0459.65061 [19] Keller, H. B., Numerical Methods for Two-Point Boundary Value Problems (1968), Ginn (Blaisdell): Ginn (Blaisdell) Boston · Zbl 0172.19503 [20] Roberts, S. M.; Shipman, J. S., Two-Point Boundary Value Problems: Shooting Methods (1972), Amer. Elsevier: Amer. Elsevier N. Y · Zbl 0247.65052 [21] Margolis, S. B., Quart. Appl. Math., 38, 61 (1980) · Zbl 0454.76066 [22] Eberius, K. H.; Hoyermann, K.; Wagner, H. Gg., (Proceedings, Thirteenth Symposium (International) on Combustion (1971), The Combustion Institute: The Combustion Institute Pittsburgh), 713 [23] Holt, J. F., Commun. ACM, 1, 366 (1964) [24] Lentini, M.; Pereyra, V., SIAM. J. Numer. Anal., 14, 91 (1977) · Zbl 0358.65069 [25] Hirschfelder, J. O.; Curtiss, C. F., J. Chem. Phys., 17, 1076 (1949) [26] Curtiss, C. F.; Hirschfelder, J. O., J. Chem. Phys., 17, 550 (1949) · Zbl 0039.42806 [27] Coffee, T. P.; Heimerl, J. M., A Comparison of Transport Algorithms for Pre-Mixed, Laminar Steady-State Flames, (presented at the Fall Meeting of the Western States Section of the Combustion Institute (October 1980)) [28] Wilke, C. R., J. Chem. Phys., 18, 517 (1950) [29] Svehla, R. A., Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures, NASA Technical Report R-132 (1962) [30] Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-Uniform Gases (1970), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0098.39702 [31] de Hoog, F. R.; Weiss, R., SIAM J. Numer. Anal., 13, 775 (1976) · Zbl 0372.65034 [32] de Hood, F. R.; Weiss, R., Comput., 24, 227 (1980) · Zbl 0441.65064 [33] Lentini, M., Boundary Value Problems over Semi-Infinite Intervals, (Ph. D. thesis (1978), California Institute of Technology) [35] Brandt, A., Math. Comput., 31, 333 (1977) · Zbl 0373.65054 [36] Southwell, R. V., Relaxation Methods in Theoretical Physics (1946), Clarendon: Clarendon Oxford · Zbl 0061.27706 [37] Keller, H. B., SIAM J. Numer. Anal., 11, 305 (1974) · Zbl 0282.65065 [38] Kautsky, J.; Nichols, N. K., Equidistributing Meshes with Constraints, Stanford University Report STAN-CS-79-766 (September 1979) [39] White, A. B., SIAM J. Numer. Anal., 16, 472 (1979) · Zbl 0407.65036 [40] Pereyra, V.; Sewell, E. G., Numer. Math., 23, 261 (1975) · Zbl 0318.65038 [41] Pearson, C. E., J. Math. Phys., 47, 134 (1968) · Zbl 0167.15801 [42] Russell, R. D.; Christiansen, J., SIAM J. Numer. Anal., 15, 59 (1978) · Zbl 0384.65038 [43] Aglow, C. M.; Schecter, S., J. Comput. Phys., 27, 351 (1978) · Zbl 0386.65038 [44] de Rivas, E. K., J. Comput. Phys., 10, 202 (1972) · Zbl 0252.65079 [45] Denny, V. E.; Landis, R. B., J. Comput. Phys., 9, 120 (1972) · Zbl 0231.65068 [46] Curtis, A. R.; Powell, M. J.D.; Reid, J. K., J. Inst. Math. Its Appl., 13, 117 (1974) · Zbl 0273.65036 [47] Hindmarsh, A. C., Solution of Block-Tridiagonal System of Linear Equations, Lawrence Livermore Laboratory Report, UCID-30150 (1977) [48] Deuflhard, P., Numer. Math., 22, 289 (1974) · Zbl 0313.65070 [49] Monchick, L.; Mason, E. A., J. Chem. Phys., 35, 1676 (1961) [50] Gordon, S.; McBride, B. J., Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapmen-Jouquet Detonations, NASA SP-273 (1971) [51] Kee, R. J.; Miller, J. A.; Jefferson, T. H., CHEMKIN: A General Purpose, Problem Independent Transportable FORTRAN Chemical Kinetics Code Package, Sandia National Laboratories Report SAND 80-8003 (1980) [52] (Peters, N., Proceedings of the GAMM Workshop on Numerical Methods in Laminar Flame Propagation (1982), Vieweg-Verlag: Vieweg-Verlag Wessbaden, West Germany), to appear [53] Kubicek, M.; Hlavacek, V.; Holodniok, M., Test Examples for Comparison of Codes for Nonlinear Boundary Value Problems in Ordinary Differential Equations, (presented at the Working Conference for Codes for Boundary Value Problems in ODE’s. presented at the Working Conference for Codes for Boundary Value Problems in ODE’s, Houston (1978)) · Zbl 0435.65075 [54] Peeters, J.; Mahnen, G., (Proceedings, Fourteenth Symposium (International) on Combustion (1973), The Combustion Institute: The Combustion Institute Pittsburgh), 133 [55] Eberius, K. H.; Hoyermann, K.; Wagner, H. Gg., (Proceedings, Fourteenth Symposium (International) on Combustion (1973), The Combustion Institute), 147 [56] Warnatz, J., Ber. Bunsenges. Phys. Chem., 82, 834 (1978) [60] Tsatsaronis, G., Combust. Flame, 33, 217 (1978) [61] Russell, R. D., Mesh Selection Methods, (presented at the Working Conference for Codes for Boundary Value Problem in ODE’S. presented at the Working Conference for Codes for Boundary Value Problem in ODE’S, Houston (1978)) · Zbl 0384.65038 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.