zbMATH — the first resource for mathematics

A new algorithm for factoring polynomials over finite fields. (English) Zbl 0493.12024

11T06 Polynomials over finite fields
68W99 Algorithms in computer science
12E05 Polynomials in general fields (irreducibility, etc.)
12-04 Software, source code, etc. for problems pertaining to field theory
Full Text: DOI
[1] E. R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24 (1970), 713 – 735. · Zbl 0247.12014
[2] J. Calmet & R. Loos, An Improvement of Rabin’s Probabilistic Algorithm for Generating Irreducible Polynomials Over \( GF(p)\), Interner Bericht Nr. 3/80, Universität Karlsruhe, West Germany. · Zbl 0456.68034
[3] Donald E. Knuth, The art of computer programming, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms; Addison-Wesley Series in Computer Science and Information Processing. · Zbl 0357.68001
[4] D. H. Lehmer, ”Computer technology applied to the theory of n numbers,” Studies in Number Theory (W. J. LeVeque, Ed.,), Math. Assoc. of America, 1969. · Zbl 0215.06404
[5] Robert T. Moenck, On the efficiency of algorithms for polynomial factoring, Math. Comp. 31 (1977), no. 137, 235 – 250. · Zbl 0348.65045
[6] Michael O. Rabin, Probabilistic algorithms in finite fields, SIAM J. Comput. 9 (1980), no. 2, 273 – 280. · Zbl 0461.12012 · doi:10.1137/0209024 · doi.org
[7] Daniel Shanks, Five number-theoretic algorithms, Proceedings of the Second Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1972) Utilitas Math., Winnipeg, Man., 1973, pp. 51 – 70. Congressus Numerantium, No. VII.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.