×

zbMATH — the first resource for mathematics

Sheaf cohomology on G/B and tensor products of Weyl modules. (English) Zbl 0493.20023

MSC:
20G05 Representation theory for linear algebraic groups
20G10 Cohomology theory for linear algebraic groups
14M17 Homogeneous spaces and generalizations
20G15 Linear algebraic groups over arbitrary fields
14L40 Other algebraic groups (geometric aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andersen, H.H, The first cohomology group of a line bundle on \(GB\), Invent. math., 51, 287-296, (1979) · Zbl 0417.20038
[2] Andersen, H.H, The Frobenius morphism on the cohomology of homogeneous vector bundles on \(GB\), Ann. of math., 112, 113-121, (1980) · Zbl 0421.20016
[3] Andersen, H.H, Vanishing theorem and induced representations, J. algebra, 62, 86-100, (1980) · Zbl 0439.20025
[4] Andersen, H.H, The strong linkage principle, J. reine angew. math., 315, 53-59, (1980) · Zbl 0439.20026
[5] Cline, E; Parshall, B; Scott, L, Induced modules and affine quotients, Math. ann., 230, 1-14, (1977) · Zbl 0378.20033
[6] Cline, E; Parshall, B; Scott, L, Induced modules and extensions of representations, Invent. math., 47, 41-51, (1978) · Zbl 0399.20039
[7] Cline, E; Parshall, B; Scott, L, Induced modules and extensions of representations, II, J. London math. soc., 20, 403-414, (1979), (2) · Zbl 0438.20028
[8] Cline, E; Parshall, B; Scott, L, Cohomology, hyperalgebras, and representations, J. algebra, 63, 98-123, (1980) · Zbl 0434.20024
[9] Demazure, M, A very simple proof of Bott’s theorem, Invent. math., 33, 271-272, (1976) · Zbl 0383.14017
[10] Hartshorne, R, Algebraic geometry, () · Zbl 0532.14001
[11] Humpreys, J.E, Introduction to Lie algebras and representation theory, ()
[12] Humphreys, J.E, Linear algebraic groups, () · Zbl 0507.20017
[13] Humphreys, J.E, Representations of algebraic groups, () · Zbl 0472.20015
[14] Humphreys, J.E, Modular representations of classical Lie algebras and semisimple groups, J. algebra, 19, 51-79, (1971) · Zbl 0219.17003
[15] Jantzen, J.C, Darstellungen halbeinfacher gruppen und kontravariante formen, J. reine angew. math., 290, 117-141, (1977) · Zbl 0342.20022
[16] Lakshmibai, V; Musili, C; Seshadri, C.S, Geometry of \(GP\), Bull. amer. math. soc., 1, 432-435, (1979) · Zbl 0466.14020
[17] Rotman, J.J, An introduction to homological algebra, (1979), Academic Press New York/San Francisco/London · Zbl 0441.18018
[18] Verma, D.N, Role of affine Weyl groups in the representation theory of algebraic Chevalley groups and their Lie algebras, (), 653-705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.