×

Solutions de l’équation \(\bar\partial\) et zéros de la classe de Nevanlinna dans certains domaines faiblement pseudo-convexes. (French) Zbl 0493.32005


MSC:

32A30 Other generalizations of function theory of one complex variable
30D50 Blaschke products, etc. (MSC2000)
32W05 \(\overline\partial\) and \(\overline\partial\)-Neumann operators
32T99 Pseudoconvex domains

References:

[1] [1] and , Foundation of Mechanics, The Benjamin Cummings Publ. Cny (1978). · Zbl 0393.70001
[2] [2] et , Projecteurs de Bergman et Szegö pour une classe de domaines faiblement pseudo-convexes, A paraître dans Compositio Mathematica. · Zbl 0538.32005
[3] [3] , Formules explicites pour les solutions minimales de l’équation ∂u = f dans la boule et dans le polydisque de Cn, Ann. Inst. Fourier, 30 (1980), 121-154. · Zbl 0425.32009
[4] [4] , Inverting □b on some weakly pseudo convex domains, Proc. Symp. Pure Math., 35 (1979), 73-76. · Zbl 0424.35021
[5] [5] and , Fundamental solutions in complex analysis, Duke Math. J., 46 (1979). · Zbl 0441.35043
[6] [6] , Lewy’s equation and analysis on pseudoconvex manifolds. I, Russian Math. Surveys, 32 (1977). · Zbl 0382.35038
[7] [7] , Lewy’s equation and analysis on a pseudoconvex manifolds, II. Math. USSR Sb., 31 (1977), 63-94. · Zbl 0388.35052
[8] [8] , Fonctionnelles analytiques et fonctions entières (n variables), Montréal, les Presses de l’Univ. de Montréal, 1968. · Zbl 0194.38801
[9] [9] , Fonctions plurisousharmoniques et formes différentielles positives, Paris, Dunod, 1968. · Zbl 0195.11603
[10] [10] , On Hölder estimates for Zu = f on weakly pseudoconvex domains, Several complex variables, Cortona 1976-1977, Scuola Norm. Sup., Pisa (1978), 247-268. · Zbl 0421.32021
[11] [11] , Théorie des distributions, Paris, Hermann. · Zbl 0962.46025
[12] [12] , Valeurs au bord pour les solutions de l’équation Z et caractérisation des zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France, 104 (1976), 225-299. · Zbl 0351.31007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.