Haagerup, Uffe; Munkholm, Hans J. Simplices of maximal volume in hyperbolic n-space. (English) Zbl 0493.51016 Acta Math. 147, 1-11 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 16 Documents MSC: 51M10 Hyperbolic and elliptic geometries (general) and generalizations 51M20 Polyhedra and polytopes; regular figures, division of spaces 51M25 Length, area and volume in real or complex geometry Keywords:hyperbolic n-space; regular n-simplex; volume; Poincare disk model PDF BibTeX XML Cite \textit{U. Haagerup} and \textit{H. J. Munkholm}, Acta Math. 147, 1--11 (1981; Zbl 0493.51016) Full Text: DOI OpenURL References: [1] Klein, F.,Vorlesungen über nicht-euklidische Geometrie. Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 26, Springer Verlag, Berlin 1928. · JFM 54.0593.01 [2] Lobatcheffsky, N. J.,Collection compléte des oeuvres géométriques de N. J. Lobatcheffsky. Kazan 1886. [3] Milnor, J. W.,Computation of volume. Lecture at Princeton University. See section 7 of [6]. · Zbl 0595.58028 [4] Milnor, J. W., Private communication. [5] Mostow, G. D.,Strong rigidity of locally symmetric spaces. Ann. of Math. Studies, vol. 78, Princeton University Press, Princeton 1973. · Zbl 0265.53039 [6] Thurston, W. P.,The Geometry and Topology of 3-manifolds. Lecture notes from Princeton University 1977/78. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.