×

Théorème de la limite centrale et convergence fonctionnelle vers un processus à accroissements independants: la méthode des martingales. (French) Zbl 0493.60033


MSC:

60F05 Central limit and other weak theorems
60F17 Functional limit theorems; invariance principles
60G44 Martingales with continuous parameter
60J99 Markov processes
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] B.M. Brown , Martingale central limit theorems . Annals Math. Statistics , t. 42 , 1971 , p. 59 - 66 . Article | MR 290428 | Zbl 0218.60048 · Zbl 0218.60048
[2] B.M. Brown , G.K. Eagleson , Martingale convergence to infinitely divisible laws with finite variances . Trans. A. M. S. , t. 162 , 1971 , p. 449 - 453 . MR 288806 | Zbl 0228.60011 · Zbl 0228.60011
[3] T. Brown , A martingale approach to the Poisson convergence of simple point processes . Ann. Probab. , t. 6 , 1978 , p. 615 - 628 . Article | MR 482991 | Zbl 0383.60050 · Zbl 0383.60050
[4] C. Dellacherie , P.A. Meyer , Probabilités et potentiel ( 2 d éd.), 2e partie, Hermann , Paris , 1980 . MR 488194
[5] R. Durrett , S.I. Resnick , Functional limit theorems for dependent variables . Ann. Probab. , t. 6 , 1978 , p. 829 - 846 . Article | MR 503954 | Zbl 0398.60024 · Zbl 0398.60024
[6] P. Ganssler , E. Hausler , Remarks on the functional central limit theorem for martingales . Z. W. , t. 50 , 1979 , p. 237 - 243 . MR 554543 | Zbl 0402.60032 · Zbl 0402.60032
[7] B.W. Gnedenko , A.N. Kolmogorov , limit distributions for sums of independent random variables . Addison-Wesley : Cambridge (Mass.) , 1954 . MR 62975 | Zbl 0056.36001 · Zbl 0056.36001
[8] B. Grigelionis , R. Mikulevicius , On stably weak convergence of semimartingales and point processes . A paraître, 1981 . MR 653647 · Zbl 0487.60041
[9] P. Hall , Martingale invariance principles . Annals of Probability , t. 5 , 1977 , p. 875 - 887 . Article | MR 517471 | Zbl 0405.60029 · Zbl 0405.60029
[10] J. Jacod , Calcul stochastique et problèmes de martingales . Lecture Notes in Math. , t. 714 , Springer , Berlin , Heidelberg , New York , 1979 . MR 542115 | Zbl 0414.60053 · Zbl 0414.60053
[11] J. Jacod , J. Mémin , Sur la convergence des semimartingales vers un processus à accroissements indépendants . Sém. Proba. XIV , Lecture Notes in Math. , t. 784 , 1980 , p. 227 - 248 . Numdam | MR 580129 | Zbl 0433.60034 · Zbl 0433.60034
[12] J. Jacod , J. Mémin , M. Métivier , Stopping times and tightness . A paraître, 1980 . · Zbl 0501.60029
[13] A. Jakubowski , On limit theorems for sums of dependent Hilbert space valued random variables . Lecture Notes in Stat. , t. 2 , 1978 (Conference in Wisla), 1980 . MR 577279 | Zbl 0451.60010 · Zbl 0451.60010
[14] A. Jakubowski , A. Kłopotowski , Quelques remarques sur les démonstrations de théorèmes limite pour des vecteurs d-dimensionnels aléatoires non indépendants . Sém. Proba. Rennes , 1980 .
[15] I. Kabanov , R. Liptcer , A. Shiryaev , Some limit theorems for simple point processes (martingale approach) . Stochastics , t. 3 , 1980 , p. 203 - 216 . MR 573204 | Zbl 0441.60045 · Zbl 0441.60045
[16] A. Kłopotowski , Limit theorems for sums of dependent random vectors in Rd . Dissert. Math. CLI , 1 - 62 , PWN , Warszawa , 1977 . Zbl 0369.60029 · Zbl 0369.60029
[17] A. Kłopotowski , L. Słominski , Limit theorems for random sums of dependent d-dimensional random vectors . A paraître, 1980 .
[18] R. Liptcer , A. Shiryaev , Théorème central limite fonctionnel pour les semimartingales . Th. Proba. Appl ., t. XXV , 1980 , p. 683 - 703 . Zbl 0454.60032 · Zbl 0454.60032
[19] D.L. Mcleish , An extended martingale invariance principle . Ann. Probab. , t. 6 , 1978 , p. 144 - 150 . Article | MR 471032 | Zbl 0379.60046 · Zbl 0379.60046
[20] R. Rebolledo , Central limit theorems for local martingales . Z. W. , t. 51 , 1980 , p. 269 - 286 . MR 566321 | Zbl 0432.60027 · Zbl 0432.60027
[21] H. Rootzen , On the functional central limit theorem for martingales II , Z. W. , t. 51 , 1980 , p. 79 - 94 . MR 566110 | Zbl 0402.60033 · Zbl 0402.60033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.